Wireless Personal Communications

, Volume 58, Issue 4, pp 657–668 | Cite as

A Two-State Markov-Based Wireless Error Model for Bluetooth Networks

Article

Abstract

Data transmission over wireless networks is challenging due to the occurrence of burst errors, and packet loss caused by such errors seriously limits the maximum achievable throughput of wireless networks. To tailor efficient transmission schemes, it is essential to develop a wireless error model that can provide insight into the behavior of wireless transmissions. In this study, we investigate the wireless error model of Bluetooth networks. We study the FHSS feature of Bluetooth using both ordinary hopping kernels and Adaptive Frequency Hopping (AFH) kernels, and design analytical error models accordingly to capture the channel behavior of Bluetooth networks. We evaluate the proposed models by comparing the analytical results to the simulation results obtained by Markov Chain Monte Carlo (MCMC) algorithms. The results show that our analytical models can represent the channel behavior of Bluetooth networks in all test cases.

Keywords

Bluetooth Error model Markov Chain Monte Carlo Gilbert-Elliot model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bluetooth specifications v1.1. http://www.bluetooth.com.
  2. 2.
    Bamahdi, O. A., & Zummo, S. A. (2006). An adaptive frequency hopping technique with application to Bluetooth-WLAN coexistence. In International conference on networking, international Conference on Systems and International Conference on Mobile Communications and Learning Technologies (pp. 131–135).Google Scholar
  3. 3.
    Chek M. C.-H., Kwok Y.-K. (2007) Design and evaluation of practical coexistence management schemes for Bluetooth and IEEE 802.11b systems. Computer Networks 51(8): 2086–2103MATHCrossRefGoogle Scholar
  4. 4.
    Chen, A. M., & Rao, R. R. (1999). Wireless channel models—Coping with complexity (Vol. 15, pp. 271–288). Berlin: SpringerGoogle Scholar
  5. 5.
    Conti A., Dardari D., Pasolini G., Andrisano O. (2003) Bluetooth and ieee 802.11b coexistence: Analytical performance evaluationin fading channels. IEEE Journal on Selected Areas in Communications 21(2): 259–269CrossRefGoogle Scholar
  6. 6.
    Cover T. M., Thomas J. A. (1991) Elements of information theory. Wiley, LondonMATHCrossRefGoogle Scholar
  7. 7.
    Elliott E. O. (1963) Estimates of error rates for codes on burst-error channels. Bell System Technical Journal 42: 1977–1997Google Scholar
  8. 8.
    Gilbert E. (1960) Capacity of a burst-noise channel. Bell System Technical Journal 39: 1253–1266MathSciNetGoogle Scholar
  9. 9.
    Golmie, N. (2000). Modeling and simulation of MAC protocols for wireless devices: Coexistence performance evaluation. In OPNETWORK Conference. IEEE.Google Scholar
  10. 10.
    Golmie N. (2004) Bluetooth dynamic scheduling and interference mitigation. Mobile Networks and Applications 9(1): 21–31CrossRefGoogle Scholar
  11. 11.
    Golmie, N., Chevrollier, N., & Elbakkouri, I. (2001). Interference aware Bluetooth packet scheduling. In IEEE GLOBECOM (pp. 2857–2863).Google Scholar
  12. 12.
    Golmie N., Chevrollier N., Rebala O. (2003) Bluetooth and WLAN coexistence: Challenges and solutions. IEEE Wireless Communications Magazine 10(6): 22–29CrossRefGoogle Scholar
  13. 13.
    IEEE 802.11, the working group setting the standards for wireless LANs. http://grouper.ieee.org/groups/802/11/.
  14. 14.
    IEEE 802.15 WPAN task group 2 (TG2). http://www.ieee802.org/15/pub/TG2.html.
  15. 15.
    IEEE 802.15.4 WPAN-LR task group. http://www.ieee802.org/15/pub/TG4.html.
  16. 16.
    Kanal L., Sastry A. (1978) Models for channels with memory and their applications to error control. IEEE Proceedings 66(7): 724–744MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khayam, S. A., & Radha, H. (2006). Constant-complexity models for wireless channels. In IEEE Infocom.Google Scholar
  18. 18.
    Krishnamoorthy, S., Robert, M., Srikanteswara, S., Anderson, M. V. C., & Reed, J. (2002). Channel frame error rate for bluetooth in the presence of microwave ovens. In IEEE VTC Fall.Google Scholar
  19. 19.
    Lansford J., Stephens A., Nevo R. (2001) Wi-fi (802.11b) and bluetooth: Enabling coexistence. IEEE Network 15(5): 20–27CrossRefGoogle Scholar
  20. 20.
    Popovski P., Yomo H., Prasad R. (2006) Strategies for adaptive frequency hopping in the unlicensed bands. IEEE Wireless Communications 13(6): 60–67CrossRefGoogle Scholar
  21. 21.
    Rondeay T. W., D’Souza M. F., Sweeney D. G. (2004) Residential microwave oven interference on Bluetooth data performance. IEEE Transactions on Consumer Electronics 50(3): 856–863CrossRefGoogle Scholar
  22. 22.
    Treister, B., Gan, H. B., Chen, K., Chen, H. K., & Eliezer, A. B. O. (2001). Adaptive frequency hopping non-collaborative coexistence mechanism. Technical report, IEEE 802.15-01/252r0.Google Scholar
  23. 23.
    Zorzi, M., Rao, R. R., & Milstein L. B. (1995). On the accuracy of a first-order markov model for data block transmissionon fading channels. In IEEE International Conference on Universal Personal Communications (pp. 211–215).Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Institute of Information ScienceAcademia SinicaTaipeiTaiwan
  2. 2.Department of Mathematics & Computer ScienceEmory UniversityAtlantaUSA

Personalised recommendations