Advertisement

Wireless Personal Communications

, Volume 56, Issue 1, pp 117–130 | Cite as

A Study on Greenhouse Automatic Control System Based on Wireless Sensor Network

  • Dae-Heon Park
  • Beom-Jin Kang
  • Kyung-Ryong Cho
  • Chang-Sun Shin
  • Sung-Eon Cho
  • Jang-Woo ParkEmail author
  • Won-Mo Yang
Article

Abstract

The system proposed in this paper collects temperature of leaves and humidity on leaves of crop. As well as greenhouse environmental information such as temperature, humidity, etc. Crop diseases, especially, have deep relationship not only with indoor environmental factors but also with humidity lasting time on leaves and temperature of leaves. Accordingly, monitoring crop itself is as important as monitoring indoor environments. Using these collected greenhouse environmental data, indoor environments can be more effectively controlled, and monitoring crop itself can contribute to improve productivity and to prevent crops from damages by blight and harmful insects. In addition, it will be possible for farmers to do control plant growth through closely studying relationship between indoor environmental information and monitored information on crop itself. Collected data can be stored to database either in server installed in greenhouse or to remote server. It is made possible to collect information and control effectively and automatically greenhouse in the site or from a remote place through web browser. System components are: temperature sensor, humidity sensor, leaf temperature sensor, leaf humidity sensor, Zigbee based wireless sensor node, relay nodes for automatic control, and data server to store greenhouse information. The system is implemented using low power wireless components, and easy to install.

Keywords

Greenhouse Auto-control Sensor network Monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alves-Serodio, C. M. J., Monteiro, J. L., & Couto, C. A. C. (1998). An integrated network for agricultural management applications. IEEE International Symposium on Electromagnetic Compatibility. America: Denver, pp. 679–683.Google Scholar
  2. 2.
    Serôdio C., Cunha J. B., Morais R., Couto C., Monteiro J. (2001) A networked platform for agricultural management systems. Computers and Electronics in Agriculture 31(1): 75–90CrossRefGoogle Scholar
  3. 3.
    Sensors Magazine. (2004). Editorial: This changes everything—market observers quantify the rapid escalation of wireless sensing and explain its effects. Wireless for Industry, Supplement to Sensors Magazine, Summer, pp. S6–S8.Google Scholar
  4. 4.
    Wang N., Zhang N., Wang M. (2006) Wireless sensors in agriculture and food industry—recent development and future perspective. Computer and Electronics in Agriculture 50: 1–14CrossRefGoogle Scholar
  5. 5.
    Kim Y.-S. (2004) Expert development for automatic control of greenhouse environment. Journal of Korean Flower Research Society 12(4): 341–345Google Scholar
  6. 6.
    Huang, Y.-J., Evans, N., Li, Z.-Q., Eckert, M., Chevre, A.-M., Renard, M., & Fitt, B. D. L. (2006). Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus. New Phytologist 129–141.Google Scholar
  7. 7.
    Hartman J. R. (1999) Effect of leaf wetness duration, temprature, and conidial inoculum dose on apple scab infections. The American Phytopathological Society 83(6): 531–534Google Scholar
  8. 8.
    Choi, S. J. Improvement management and production of crops in greenhouse. Korean Research Society for Protected Horticulture, pp. 7–15.Google Scholar
  9. 9.
    Wilks, D. S., & Shen, K. W. (1991). Threshold relative humidity duration forecasts for plant disease prediction. American Meteorological Society, pp. 463–465.Google Scholar
  10. 10.
    TK71730S LOW DROPOUT VOLTAGE REGULATOP, www.alldatasheet.co.kr.
  11. 11.
    CC2420 2.4 GHz IEEE 802.15.4/Zigbee RF Transceiver, www.alldatasheet.co.kr.
  12. 12.
    SFS5 Series AC-DC Converter Compact Miniature Miniature Type, www.alldatasheet.co.kr.
  13. 13.
    Choung, B.-M. (2006). u-farm foreign application case book. Nation Information Society Agency.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Dae-Heon Park
    • 1
  • Beom-Jin Kang
    • 1
  • Kyung-Ryong Cho
    • 1
  • Chang-Sun Shin
    • 1
  • Sung-Eon Cho
    • 1
  • Jang-Woo Park
    • 1
    Email author
  • Won-Mo Yang
    • 2
  1. 1.Department of Information and Communication EngineeringSunchon National UniversitySunchonSouth Korea
  2. 2.Department of Horticulture and Vegetation MedicalSunchon National UniversitySunchonSouth Korea

Personalised recommendations