Wireless Personal Communications

, Volume 56, Issue 2, pp 277–299 | Cite as

Performance Analysis of Maximum SNR Scheduling with an Infrastructure Relay Link

  • Taneli Riihonen
  • Risto Wichman
  • Jyri Hämäläinen
Article

Abstract

We consider infrastructure-based amplify-and-forward (AF) relaying for extending downlink and uplink coverage areas of a cellular base station. The base station serves multiple mobile users via a multi-hop backhaul relay link by sharing out access link channel resources with maximum signal-to-noise ratio (SNR) scheduling. We analyze the performance of the system by deriving closed-form expressions for outage probability, outage capacity, ergodic capacity, average end-to-end SNR and amount of fading (AoF). These measures show that maximum SNR scheduling of multiple users in a cellular relay link offers significant diversity, capacity and SNR improvement over single-user transmission and round robin scheduling. We also relate performance of the relay link to that of a distributed antenna system (DAS), and show that the noisy wireless backhaul relay link induces tolerable performance deterioration compared to deploying a cable-connected distributed antenna.

Keywords

Amplify-and-forward Mobile communication Relay Multi-user scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pabst R., Walke B. H., Schultz D. C., Herhold P., Yanikomeroglu H., Mukherjee S. et al (2004) Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine 42(9): 80–89CrossRefGoogle Scholar
  2. 2.
    Van Der Meulen E. C. (1971) Three-terminal communication channels. Advances in Applied Probability 3: 120–154MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cover T. M., El Gamal A. A. (1979) Capacity theorems for the relay channel. IEEE Transactions on Information Theory 25(5): 572–584MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Nabar R. U., Bölcskei H., Kneubühler F. W. (2004) Fading relay channels: performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications 22(6): 1099–1109CrossRefGoogle Scholar
  5. 5.
    Stefanov A., Erkip E. (2004) Cooperative coding for wireless networks. IEEE Transactions on Communications 52(9): 1470–1476CrossRefGoogle Scholar
  6. 6.
    Laneman J. N., Tse D. N. C., Wornell G. W. (2004) Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12): 3062–3080CrossRefMathSciNetGoogle Scholar
  7. 7.
    Scutari G., Barbarossa S. (2005) Distributed space-time coding for regenerative relay networks. IEEE Transactions on Wireless Communications 4(5): 2387–2399CrossRefGoogle Scholar
  8. 8.
    3rd generation partnership project; technical specification group radio access network. 3GPP TS 25.106 V8.0.2 (2008-03), UTRA repeater radio transmission and reception (Release 8), March 2008.Google Scholar
  9. 9.
    Hamazumi, H., Imamura, K., Iai, N., Shibuya, K., & Sasaki, M. (2000). A study of a loop interference canceller for the relay stations in an SFN for digital terrestrial broadcasting. In IEEE global telecommunications conference (Vol. 1, pp. 167–171).Google Scholar
  10. 10.
    3rd generation partnership project; technical specification group radio access network. 3GPP TR 25.814 V7.1.0 (2006-09), Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA); (Release 7), September 2006.Google Scholar
  11. 11.
    IEEE Std 802.16e-2005, IEEE standard for local and metropolitan area networks, part 16: air interface for fixed and mobile broadband wireless access systems, February 2006.Google Scholar
  12. 12.
    Can B., Portalski M., Lebreton H. S. D., Frattasi S., Suraweera H. A. (2007) Implementation issues for OFDM-based multihop cellular networks. IEEE Communications Magazine 45(9): 74–81CrossRefGoogle Scholar
  13. 13.
    Kenington P. B. (1999) Emerging technologies for software radio. Electronics & Communication Engineering Journal 11(2): 69–83CrossRefGoogle Scholar
  14. 14.
    Saleh A. A. M., Jr. Rustako A. J., Roman R. S. (1987) Distributed antennas for indoor radio communications. IEEE Transactions on Communications 35(12): 1245–1251CrossRefGoogle Scholar
  15. 15.
    Choi W., Andrews J. G. (2007) Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Transactions on Wireless Communications 6(1): 69–73CrossRefGoogle Scholar
  16. 16.
    Krikidis I., Belfiore J. C. (2007) Three scheduling schemes for amplify-and-forward relay environments. IEEE Communications Letters 11(5): 414–416CrossRefGoogle Scholar
  17. 17.
    Krikidis I., Belfiore J. C. (2007) Scheduling for amplify-and-forward cooperative networks. IEEE Transactions on Vehicular Technology 56(6): 3780–3790CrossRefGoogle Scholar
  18. 18.
    Hammerström, I., Zhao, J., & Wittneben A. (2005, June). Temporal fairness enhanced scheduling for cooperative relaying networks in low mobility fading environments. In IEEE 6th workshop on signal processing advances in wireless communications (SPAWC’05) (pp. 525–529).Google Scholar
  19. 19.
    Hammerström, I., Kuhn, M., & Wittneben, A. (2004, September). Channel adaptive scheduling for cooperative relay networks. In IEEE 60th vehicular technology conference (VTC’04-Fall) (Vol. 4, pp. 2784–2788).Google Scholar
  20. 20.
    Wang, R., Cox, D. C., Viswanathan, H., & Mukherjee, S. (2002, September). A first step toward distributed scheduling policies in cellular ad hoc networks. In 4th international workshop on mobile and wireless communications Network (pp. 8–12).Google Scholar
  21. 21.
    Viswanathan H., Mukherjee S. (2005) Performance of cellular networks with relays and centralized scheduling. IEEE Transactions on Wireless Communications 4(5): 2318–2328CrossRefGoogle Scholar
  22. 22.
    Charafeddine, M., Oyman, Ö., & Sandhu, S. (2007, March). System-level performance of cellular multihop relaying with multiuser scheduling. In 41st annual conference on information sciences and systems (CISS’07) (pp. 631–636).Google Scholar
  23. 23.
    Huang, L., Rong, M., Wang, L., Xue, Y., & Schulz, E. (2007, March). Resource scheduling for OFDMA/TDD based relay enhanced cellular networks. In IEEE wireless communications and networking conference (WCNC’07) (pp. 1546–1550).Google Scholar
  24. 24.
    Liu Y., Hoshyar R., Yang X., Tafazolli R. (2006) Integrated radio resource allocation for multihop cellular networks with fixed relay stations. IEEE Journal on Selected Areas in Communications 24(11): 2137–2146CrossRefGoogle Scholar
  25. 25.
    Lee Y.-N., Chen J.-C., Wang Y.-C., Chen J.-T. (2007) A novel distributed scheduling algorithm for downlink relay networks. IEEE Transactions on Wireless Communications 6(6): 1985–1991CrossRefGoogle Scholar
  26. 26.
    Challa, N., & Cam, H. (2004, April). Cost-aware downlink scheduling of shared channels for cellular networks with relays. In IEEE international conference on performance, computing, and communications (IPCCC’04) (pp. 793–798).Google Scholar
  27. 27.
    Agustin, A., Vidal, J., & Muñoz, O. (2005, June). Multi-user diversity in the cooperative transmissions. In IST mobile and wireless communications summit.Google Scholar
  28. 28.
    Zhou, R., Nguyen, H. N., & Sasase, I. (2007, March). Packet scheduling for cellular networks with relaying to support user QoS and fairness. In IEEE wireless communications and networking conference (WCNC’07) (pp. 3899–3903).Google Scholar
  29. 29.
    Lo, E. S., & Letaief K. B. (2007, March). Optimizing downlink throughput with user cooperation and scheduling in adaptive cellular networks. In IEEE wireless communications and networking conference (WCNC’07) (pp. 4345–4350).Google Scholar
  30. 30.
    Kim, H.-S., Seo, W., Kim, H., Bae, S., You, C., & Hong, D. (2007, September). Performance analysis of wireless dual-hop systems with multirelay and multiuser. In IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’07).Google Scholar
  31. 31.
    Kim, J.-B., & Kim, D. (2006, October–November). End-to-end BER performance of cooperative MIMO transmission with antenna selection in Rayleigh fading. In 40th asilomar conference on signals, systems and computers (ACSSC’06) (pp. 1654–1657).Google Scholar
  32. 32.
    Kang, M. S., Jung, B. C., & Sung, D. K. (2007, October). Performance analysis of four different downlink data relaying schemes in cellular systems. In International symposium on communications and information technologies (ISCIT’07) (pp. 511–516).Google Scholar
  33. 33.
    Hasna M. O., Alouini M.-S. (2003) Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters 7(5): 216–218CrossRefGoogle Scholar
  34. 34.
    Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (1992). A first course in order statistics. Wiley-Interscience.Google Scholar
  35. 35.
    Tse D., Viswanath P. (2005) Fundamentals of wireless communication. Cambridge University Press, CambridgeMATHGoogle Scholar
  36. 36.
    Abramowitz M., Stegun I. A. (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New YorkMATHGoogle Scholar
  37. 37.
    Charash U. (1979) Reception through Nakagami fading multipath channels with random delays. IEEE Transactions on Communications 27(4): 657–670MATHCrossRefGoogle Scholar
  38. 38.
    Deng X., Haimovich A. M. (2005) Power allocation for cooperative relaying in wireless networks. IEEE Communications Letters 9(11): 994–996CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Taneli Riihonen
    • 1
  • Risto Wichman
    • 1
  • Jyri Hämäläinen
    • 1
  1. 1.Helsinki University of TechnologyTKKFinland

Personalised recommendations