Wireless Personal Communications

, Volume 56, Issue 2, pp 183–206 | Cite as

Supporting QoS in Integrated Ad-Hoc Networks

  • Marek NatkaniecEmail author
  • Katarzyna Kosek-Szott
  • Szymon Szott
  • Janusz Gozdecki
  • Andrzej Głowacz
  • Susana Sargento


Ad-hoc networking is becoming a promising solution to increase the radio coverage of wireless systems. Integrated mobile ad-hoc networks (MANETs), considered as multi-hop networks connected to fixed networks through one or more gateways, seem to be very profitable for both the provider and the user. This article describes an architecture for end-to-end QoS in such MANETs, developed within the IST project DAIDALOS II. In order to explain the framework’s functionality, the technology, service differentiation mechanisms, MAC layer measurements, and signalling protocols are discussed. The modules required by the network elements as well as their integration are also described. Additionally, the paper presents the results obtained during verification tests performed in exemplary testbed scenarios.


Ad-hoc networks Infrastructure networks QoS IEEE 802.11 EDCA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IST FP6 Integrated Project DAIDALOS II:
  2. 2.
    Corson, S., & Macker, J. (1999). Mobile ad hoc networking (MANET): Routing protocol performance issues and evaluation considerations. RFC2501.Google Scholar
  3. 3.
    Ruffino, S., Stupar, P., Clausen, T., & Singh, S. (2006). Connectivity scenarios for MANET. IETF Draft.Google Scholar
  4. 4.
    Xu, B., Hischke, S., & Walke, B. (2003). The role of ad hoc networking in future wireless communications. In ICCT, Beijing.Google Scholar
  5. 5.
    Bayer, N., Xu, B., & Hischke, S. (2004). An architecture for connecting ad hoc networks with the IPv6 backbone (6bone) using a wireless gateway. In European Wireless Conference.Google Scholar
  6. 6.
    Wisely, D., & Mitjana, E. (2002). Paving the road to systems beyond 3G–The IST MIND project. Journal of Communication and Networks.Google Scholar
  7. 7.
    Armuelles, I., et al. (2004). On ad hoc networks in the 4G integration process. In 3rd Annual Mediterranean Ad Hoc Networking Workshop Med-Hoc.Google Scholar
  8. 8.
    IST FP6 Integrated project ambient networks.
  9. 9.
    Crisóstomo, S., et al. (2005). A QoS architecture integrating mobile Ad-Hoc and infrastructure networks. Workshop on Internet Compatible QoS in Ad-Hoc Wireless Networks, Egypt.Google Scholar
  10. 10.
    IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements-part II: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), pp. C1–1184, (2007).Google Scholar
  11. 11.
    IETF Next Steps in Signaling (NSIS) Working Group.
  12. 12.
    Głowacz, A., et al. (2006). MAC layer measurements for supporting QoS in IEEE 802.11 Ad-Hoc networks. Workshop to QoS, Networking Conference, Coimbra, Portugal.Google Scholar
  13. 13.
    Blake, S., et al. (1998). An Architecture for Diff. Services. RFC 2475. IETF.Google Scholar
  14. 14.
    Hancock, R., et al. (2005). Next steps in signaling (NSIS): Framework. RFC 4080, IETF.Google Scholar
  15. 15.
    Clausen, T., & Jacquet, P. (2003). Optimized link state routing protocol. RFC 3626. IETF.Google Scholar
  16. 16.
    Perkins, C., et al. (2003). Ad hoc on-demand distance vector routing. RFC 3561. IETF.Google Scholar
  17. 17.
    Lindgren, A., Almquist, A., & Schelén, O. (2001). Evaluation of quality of service schemes for IEEE 802.11 wireless LANs. In 26th Annual IEEE conference on local computer networks (LCN 2001), Tampa.Google Scholar
  18. 18.
    Ahn G. S. et al (2002) Supporting service differentiation for real-time and best-effort traffic in stateless wireless ad-hoc networks (SWAN). IEEE Transactions on Mobile Computing 3: 192–207Google Scholar
  19. 19.
    Calhoun, P., et al. (2003). DIAMETER base protocol. RFC 3588. IETF.Google Scholar
  20. 20.
    Rosenberg, J., et al. (2002). SIP: Session initiation protocol. RFC 3261. IETF.Google Scholar
  21. 21.
    MadWifi—Multiband atheros driver for Wi-Fi,

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Marek Natkaniec
    • 1
    Email author
  • Katarzyna Kosek-Szott
    • 1
  • Szymon Szott
    • 1
  • Janusz Gozdecki
    • 1
  • Andrzej Głowacz
    • 1
  • Susana Sargento
    • 2
  1. 1.AGH University of Science and TechnologyKrakowPoland
  2. 2.Campus Universitário de SantiagoAveiroPortugal

Personalised recommendations