Wireless Personal Communications

, Volume 54, Issue 3, pp 543–558 | Cite as

Adaptive DFE Multiuser Receiver for CDMA Systems using Two-Step LMS-Type Algorithm: An Equalization Approach

Article

Abstract

This paper presents an adaptive decision feedback equalizer (DFE) based multiuser receiver for code division multiple access (CDMA) systems over smoothly time-varying multipath fading channels using the two-step LMS-type algorithm. The frequency-selective fading channel is modeled as a tapped-delay-line filter with smoothly time-varying Rayleigh-distributed tap coefficients. The receiver uses an adaptive minimum mean square error (MMSE) multiuser channel estimator based on the reduced Kalman least mean square (RK-LMS) algorithm to predict these tap coefficients (Kohli and Mehra, Wireless Personal Communication 46:507–521, 2008). We propose the design of adaptive MMSE feedforward and feedback filters by using the estimated channel response. Unlike the previously available Kalman filtering algorithm based approach (Chen and Chen, IEEE Transactions on Signal Processing 49:1523–1532, 2001), the incorporation of RK-LMS algorithm reduces the computational complexity of multiuser receiver. The computer simulation results are presented to show the substantial improvement in its bit error rate performance over the conventional LMS algorithm based receiver. It can be inferred that the proposed multiuser receiver proves to be robust against the nonstationarity introduced due to channel variations, and it is also beneficial for the multiuser interference cancellation and data detection in CDMA systems.

Keywords

Adaptive DFE Kalman filter Multiuser detection MMSE Estimation Multipath fading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulrahman M., Sheikh A. U. H., Falconer D. D. (1994) Decision feedback equalization for CDMA in indoor wireless communications. IEEE Journal on Selected Areas in Communications 12: 698–706CrossRefGoogle Scholar
  2. 2.
    Banister B. C., Zeidler J. R. (2002) Tracking performance of RLS algorithm applied to an antenna array in a realistic fading environment. IEEE Transactions on Signal Processing 50: 1037–1050CrossRefGoogle Scholar
  3. 3.
    Chen L., Chen B. (2001) A robust adaptive DFE receiver for DS-CDMA system under multipath fading channels. IEEE Transactions on Signal Processing 49: 1523–1532CrossRefGoogle Scholar
  4. 4.
    Chen B., Tsai C., Hsu C. (2005) Robust adaptive MMSE/DFE multiuser detection in multipath fading channel with impulse noise. IEEE Transactions on Signal Processing 53: 306–317CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cioffi J. M., Dudevoir G. P., Eyuboglu M. V., Forney G. D. (1995) MMSE decision feedback equalizers and coding-part I: Equalization results. IEEE Transactions on Communications 43: 2582–2594MATHCrossRefGoogle Scholar
  6. 6.
    Davis L., Collings I., Evans R. (1998) Coupled estimators for equalization of fast-fading mobile channels. IEEE Transactions on Communications 46: 1262–1265CrossRefGoogle Scholar
  7. 7.
    Gazor S. (1999) Predictions in LMS-Type adaptive algorithms for smoothly time-varying environments. IEEE Transactions on Signal Processing 47: 1735–1739CrossRefGoogle Scholar
  8. 8.
    Honig M., Madhow U., Verdú S. (1995) Blind adaptive multiuser detection. IEEE Transactions on Information Theory 41: 944–960MATHCrossRefGoogle Scholar
  9. 9.
    Honig M., Tsatsanis M. K. (2000) Adaptive techniques for multiuser CDMA receivers: Enhanced signal processing with short spreading codes. IEEE Signal Processing Magazine 17: 49–61CrossRefGoogle Scholar
  10. 10.
    Iltis R. A. (1994) An EKF-based joint estimator for interference, multipath, and code delay in a DS spread spectrum receiver. IEEE Transactions on Communications 42: 1288–1299CrossRefGoogle Scholar
  11. 11.
    Iltis R. A., Mailaender L. (1994) An adaptive multiuser detector with joint amplitude and delay estimation. IEEE Journal on Selected Areas in Communications 12: 774–785CrossRefGoogle Scholar
  12. 12.
    Klein A., Kaleh G. K., Baier P. W. (1996) Zero forcing and minimum mean square error equalization for multiuser detection in code division multiple access channels. IEEE Transactions on Vehicular Technology 45: 276–287CrossRefGoogle Scholar
  13. 13.
    Kohli A. K., Mehra D. K. (2006) Tracking of time-varying channels using two-step LMS-type adaptive algorithm. IEEE Transactions on Signal Processing 54: 2606–2615CrossRefGoogle Scholar
  14. 14.
    Kohli A. K., Mehra D. K. (2007) New results for probability of error performance in MMSE multiuser detection for CDMA. Digital Signal Process 17: 297–310CrossRefGoogle Scholar
  15. 15.
    Kohli A. K., Mehra D. K. (2008) Adaptive multiuser channel estimator using reduced Kalman/LMS algorithm. Wireless Personal Communication 46: 507–521CrossRefGoogle Scholar
  16. 16.
    Lindbom L., Sternad M., Ahlén A. (2001) Tracking of time-varying mobile radio channels—Part I: The Wiener LMS algorithm. IEEE Transactions on Communications 49: 2207–2217MATHCrossRefGoogle Scholar
  17. 17.
    Lindbom L., Sternad M., Ahlén A., Falkenström M. (2002) Tracking of time-varying mobile radio channels—Part II: A case study. IEEE Transactions on Communications 50: 156–167CrossRefGoogle Scholar
  18. 18.
    Macchi O. (1986) Optimization of adaptive identification for time-varying filters. IEEE Transactions on Automatic Control 31: 283–287MATHCrossRefGoogle Scholar
  19. 19.
    Madhow U. (1998) MMSE interference suppression for joint acquisition and demodulation of direct sequence CDMA signals. IEEE Transactions on Communications 46: 1065–1075CrossRefGoogle Scholar
  20. 20.
    Madhow U., Honig M. L. (1994) MMSE interference suppression for direct sequence spread spectrum CDMA. IEEE Transactions on Communications 42: 3178–3188CrossRefGoogle Scholar
  21. 21.
    McLaughlin S. (1991) Adaptive equalization via Kalman filtering techniques. Proceedings IEE 138: 388–396Google Scholar
  22. 22.
    Mulgrew B. (1987) Kalman filter technique in adaptive filtering. Proceedings IEE 134: 239–243Google Scholar
  23. 23.
    Poor H. V., Verdú S. (1997) Probability of error in MMSE multiuser detection. IEEE Transactions on Information Theory 43: 858–871MATHCrossRefGoogle Scholar
  24. 24.
    Proakis J. G. (1995) Digital communications (3rd ed.). McGraw-Hill Inc, NY, USAGoogle Scholar
  25. 25.
    Rapajic P. B., Vucetic B. S. (1994) Adaptive receiver structures for asynchronous CDMA systems. IEEE Journal on Selected Areas in Communications 12: 685–697CrossRefGoogle Scholar
  26. 26.
    Rappaport T. S. (2002) Wireless communications—principles and practice (2nd ed.). Prentice-Hall, Englewood Cliffs, NJ, USAGoogle Scholar
  27. 27.
    Sayed A. H., Kailath T. (1994) A state-space approach to adaptive RLS filtering. IEEE Signal Processing Magazine 11: 18–60CrossRefGoogle Scholar
  28. 28.
    Smee J. E., Schwartz S. C. (2000) Adaptive feedforward/feedbackward architectures for multiuser detection in high data rate wireless CDMA networks. IEEE Transactions on Communications 48: 996–1011CrossRefGoogle Scholar
  29. 29.
    Tastsanis M. K., Giannakis G. B. (1996) Optimal decorrelating receivers for DS-CDMA systems: A signal processing framework. IEEE Transactions on Signal Processing 44: 3044–3054CrossRefGoogle Scholar
  30. 30.
    Tong L., Xu G., Kailath T. (1994) Blind identification and equalization based on second-order statistics: A time domain approach. IEEE Transactions on Information Theory 40: 340–349CrossRefGoogle Scholar
  31. 31.
    Torlak M., Xu G. (1997) Blind multiuser channel estimation in asynchronous CDMA systems. IEEE Transactions on Signal Processing 45: 137–147CrossRefGoogle Scholar
  32. 32.
    Van Trees H. L. (2002) Optimum array processing. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  33. 33.
    Verdú S. (1986) Minimum probability of error for asynchronous Gaussian multiple-access channels. IEEE Transactions on Information Theory 32: 85–96MATHCrossRefGoogle Scholar
  34. 34.
    Verdú S. (1998) Multiuser detection. Cambridge University Press, CambridgeMATHGoogle Scholar
  35. 35.
    Widrow B., McCool J. M., Larimore M. G., Johnson C. R. (1976) Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proceedings IEEE 64: 1151–1162CrossRefMathSciNetGoogle Scholar
  36. 36.
    Wu P. H., Duel-Hallen A. (2000) Multiuser detectors with disjoint Kalman channel estimators for synchronous CDMA mobile radio channels. IEEE Transactions on Communications 5: 752–757CrossRefGoogle Scholar
  37. 37.
    Xie Z., Short R. T., Rushforth C. K. (1990) A family of sub-optimum detectors for coherent multiuser communications. IEEE Journal on Selected Areas in Communications 8: 683–690CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of Electronics and Computer EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations