Advertisement

Wireless Personal Communications

, Volume 53, Issue 1, pp 81–109 | Cite as

Management System for Terminals in the Wireless B3G World

  • Panagiotis DemestichasEmail author
  • Apostolos Katidiotis
  • Dionysios Petromanolakis
  • Vera Stavroulaki
Article

Abstract

In the era of wireless communications, Beyond the 3rd Generation (B3G), a network operator (NO) should satisfy numerous requirements, namely, personalisation, context awareness, always best connectivity, ubiquitous service provision and seamless mobility. A NO can efficiently satisfy the requirements by relying on the different radio networks of its heterogeneous infrastructure, and potentially on other cooperating networks. In this respect, the NO should possess advanced management mechanisms for driving its users to the most appropriate networks that satisfy the requirements. The presentation of such a management system is the specific contribution of this paper. The system is called Reconfigurable Terminal Management System (RTMS). In general, it provides the means for profile modelling, the acquisition of monitoring/discovery/context information, and the negotiation and selection of configurations, based on information deriving from policies, as well as the profiles and the context. Our work focuses on the role and the information of the components of the RTMS. Concrete functionality for accomplishing the role is also presented. Nevertheless, the system is open to the integration of alternate functionality. Our discussion includes a business case that presents in high-level terms the role of the management system, a detailed description of the components of the management system and results that show the efficiency of the management schemes. A summary and further research challenges, conclude this article.

Keywords

Configuration negotiation and selection Profiles Policies Context awareness Always-best connectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wireless World Research Forum (WWRF). (2008). http://www.wireless-world-research.org.
  2. 2.
    European Commission. (2007). 6th Framework Programme (FP6), Information Society Technologies (IST), Project End-to-End Reconfigurability (E 2 R), http://e2r2.motlabs.com.
  3. 3.
    European Commission. (2007). 7th Framework Programme (FP7), Information and Communication Technologies (ICT), Project End-to-End Efficiency (E 3), http://www.ict-e3.eu.
  4. 4.
    Demestichas P., Vivier G., El-Khazen K., Theologou M. (2004) Evolution in wireless systems management concepts: From composite radio to reconfigurability. IEEE Communications Magazine 42(5): 90–98CrossRefGoogle Scholar
  5. 5.
    Demestichas P., Vivier G., Martinez G., Papadopoulou L., Stavroulaki V., Galliano F., Theologou M. (2002) Wireless beyond 3G: Managing services and network resources. IEEE Computer 35(8): 96–98Google Scholar
  6. 6.
    Third (3 rd) Generation Partnership Project (3GPP). (2006). Web site, http://www.3gpp.org.
  7. 7.
    Institute of Electrical and Electronics Engineers (IEEE). (2008). 802 Standards, http://www.ieee802.org.
  8. 8.
    WiMAX Forum. (2008). http://www.wimaxforum.org.
  9. 9.
    Digital Video Broadcasting (DVB). (2008). http://www.dvb.org.
  10. 10.
    Bluetooth. (2008). http://www.bluetooth.com.
  11. 11.
    ZigBee Alliance. (2008). http://www.zigbee.org.
  12. 12.
    Software Defined Radio Forum (SDRF). (2008). http://www.sdrforum.org.
  13. 13.
    Thomas, R., Friend, D., DaSilva, L., & McKenzie, A. (2006). Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine, 44(12).Google Scholar
  14. 14.
    Federal Communications Commission (FCC). (2003, December). Notice of proposed rule making and order. FCC Et docket no. 03-322, Et docket no. 03-108.Google Scholar
  15. 15.
    Jennings N.R., Faratin P., Lomuscio A.R., Parsons S., Sierra C., Wooldridge M. (2001) Automated negotiation: Prospects, methods and challenges. International Journal of Group Decision and Negotiation 10(2): 199–215CrossRefGoogle Scholar
  16. 16.
    Hasselbring, W., & Reussner, R. (2006). Towards trustworthy software systems. IEEE Computer, 29(4), April.Google Scholar
  17. 17.
    Stavroulaki V., Buljore S., Roux P., Melin E. (2006) Equipment management issues in B3G end-to-end reconfigurable systems. IEEE Wireless Communications Magazine 13(3): 24–32CrossRefGoogle Scholar
  18. 18.
    Van Sinderen, M. J., Van Halteren, A. T., Wegdam, M., Meeuwissen, H. B., & Henk Eertink, E. (2006). Supporting context-aware mobile applications. IEEE Communications Magazine, 44(9), Sept.Google Scholar
  19. 19.
    Bellavista, P., Corradi, A., Montanari, R., & Tononelli, A. (2006). Context-aware semantic discovery for next generation mobile systems. IEEE Communications Magazine, 44(9), Sept.Google Scholar
  20. 20.
    Tsagkaris K., Katidiotis A., Demestichas P. (2008) Neural network-based learning schemes for cognitive radio systems. Computer Communications Journal 31(14): 3394–3404CrossRefGoogle Scholar
  21. 21.
    Liu X., Shankar N.S. (2006) Sensing-based opportunistic channel access. Mobile Networks and Applications Journal 11(4): 577–591 AvgCrossRefGoogle Scholar
  22. 22.
    Kim H., Shin K.G. (2008) Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing 7(5): 533–545CrossRefMathSciNetGoogle Scholar
  23. 23.
    Perez-Romero, J., Sallent, O., Agusti, R., & Giupponi, L. (2007, April). A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation. In Proceedings of 2nd international symposium on new frontiers in dynamic spectrum access networks 2007 (DySPAN 2007). Dublin, Ireland.Google Scholar
  24. 24.
    Open Mobile Alliance (OMA).(2008). http://www.openmobilealliance.org/.
  25. 25.
    Strassner J., Btrabsner J. (2003) Policy-based network management: solution for the next generation. Elsevier Science and Technology Books, ElsevierGoogle Scholar
  26. 26.
    Song, Q., & Jamalipour, A. (2005). Network selection in integrated wireless LAN and UMTS environment using mathematical modelling and computing techniques. IEEE Wireless Communications Magazine, 12(3), June.Google Scholar
  27. 27.
    Bari, F., & Leung, V. (2007). Automated network selection in a heterogeneous wireless network environment. IEEE Network, 21 (1), Jan/Feb.Google Scholar
  28. 28.
    Nguyen-Vuong, Q. T., Agoulmine, N., & Ghamri-Doudane, Y. (2007). Terminal controlled mobility management in heterogeneous wireless networks. IEEE Communications Magazine, 45(4), April.Google Scholar
  29. 29.
    Von Neumann J., Morgenstern O. (1944) Theory of games and economic behavior. Wiley, New YorkzbMATHGoogle Scholar
  30. 30.
    Kephart J., Chess D. (2003) The vision of autonomic computing. IEEE Computer 36(1): 41–50Google Scholar
  31. 31.
    Demestichas P., Boscovic D., Stavroulaki V., Lee A., Strassner J. (2006) m@ANGEL: Autonomic management platform for seamless wireless cognitive connectivity to the mobile Internet. IEEE Communications Magazine 44(6): 118–127CrossRefGoogle Scholar
  32. 32.
    Nolan K., Doyle L. (2007) Teamwork and collaboration in cognitive wireless networks. IEEE Wireless Communications Magazine 14((4): 22–27CrossRefGoogle Scholar
  33. 33.
    Institute of Electrical and Electronics Engineers (IEEE). (2008). Standards Coordinating Committee 41 (SCC41), Dynamic Spectrum Access Networks, http://www.scc41.or..
  34. 34.
    Doran T. (2006). IEEE 1220: For practical systems engineering. IEEE Computer, 39(5), May.Google Scholar
  35. 35.
    Carrey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP- completeness. San Fransisco: W. H. Freeman.Google Scholar
  36. 36.
    Papadimitriou C., Steiglitz K. (1982) Combinatorial optimization: Algorithms and complexity. Englewood Cliffs, Prentice Hall InczbMATHGoogle Scholar
  37. 37.
    Aarts E., Korts J. (1989) Simulated annealing and the Boltzmann machines. Wiley, New YorkGoogle Scholar
  38. 38.
    Michalewicz Z. (1995) Genetic algorithms + Data structures = Evolution programs. Springer-Verlag, BerlinGoogle Scholar
  39. 39.
    Glover F., Taillard E., de Werra D. (1993) A user’s guide to Taboo search. Annals of Operations Research 41: 3–28zbMATHCrossRefGoogle Scholar
  40. 40.
    Papadimitriou C., Steiglitz K. (1982) Combinatorial optimization: Algorithms and complexity. Englewood Cliffs, Prentice Hall, InczbMATHGoogle Scholar
  41. 41.
    Tsagkaris K., Dimitrakopoulos G., Saatsakis A., Demestichas P. (2007) Distributed radio access technology selection for adaptive networks in high-speed B3G infrastructures. International Journal of Communication Systems 20(8): 969–992CrossRefGoogle Scholar
  42. 42.
    Mitola J., Maguire Jr. G.Q. (1999) Cognitive radio: Making software radios more personal. IEEE Personal Communications 6(4): 13–18CrossRefGoogle Scholar
  43. 43.
    Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23(2): 201–220CrossRefGoogle Scholar
  44. 44.
    Demestichas P., Dimitrakopoloulos G., Strassner J., Bourse D. (2006) Introducing reconfigurability and cognitive network concepts in the wireless world. IEEE Vehicular Technology Magazine 1(1): 33–39Google Scholar
  45. 45.
    Venkatesha Prasad R., Pawelczak P., Hoffmeyer J., Berger S. (2008) Cognitive functionality in next generation wireless networks: Standardization efforts. IEEE Communications Magazine 46(4): 72–78CrossRefGoogle Scholar
  46. 46.
    Pandey V., Ghosal D., Mukherjee B. (2007). Pricing-based approaches in the design of next-generation wireless networks: A review and a unified proposal. IEEE Communications Surveys and Tutorials, 9 (2).Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Panagiotis Demestichas
    • 1
    Email author
  • Apostolos Katidiotis
    • 1
  • Dionysios Petromanolakis
    • 1
  • Vera Stavroulaki
    • 1
  1. 1.University of PiraeusPiraeusGreece

Personalised recommendations