Wireless Personal Communications

, Volume 49, Issue 2, pp 245–261 | Cite as

A Practical Space-Code Correlator Receiver for DSP Based Software Radio Implementation in CDMA2000

  • Kerem Kucuk
  • Adnan KavakEmail author
  • Mustafa Karakoc
  • Halil Yiǧit
  • Caner Ozdemir


Development of practical algorithms for beamforming in 3G CDMA systems and their software radio implementations are still a challenging task, which will facilitate upgrading of traditional base stations into smart antenna capable 3G base stations. In this paper, we propose a practical space-code correlator (SCC) receiver structure for its software radio implementation a DSP. SCC’s advantage comes from the fact that it doesn’t require any training sequence or learning parameter as in other algorithms (LMS or CM). DSP implementations of the SCC are performed using Texas Instruments C67xx family platforms. In the simulations, reverse link base band signal format of CDMA2000 is used and the effects of different array topologies (uniform linear array-ULA or uniform circular array-UCA) are considered. The implementation results regarding beamforming accuracy, weight vector computation time (execution time), search resolution effect on DOA estimation accuracy, DSP resource utilization, and received SINR are presented. The results show that DSP based SCC beamformer can estimate weight vectors within less than 10 ms with DOA search resolution of 2° especially when C6713 DSP is used. With faster DSPs and larger search resolutions, execution time could be significantly reduced as well. It provides comparable SINR performance with LMS and CM algorithms.


Adaptive arrays CDMA2000 Digital signal processor (DSP) Direction of arrival (DOA) estimation Field programmable gate array(FPGA) Smart antenna systems (SAS) Software radio 3G Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patti J.J., Husnay R.M., Pintar J. (1999) A smart software radio: Concept development and demonstration. IEEE Journal on Selected Areas in Communications 17(4): 631–649CrossRefGoogle Scholar
  2. 2.
    Burns P. (2003) Software defined radio for 3G. Artec House, Boston, MA, USA, pp 221–237Google Scholar
  3. 3.
    Rappaport T.S., Liberti J.C. (1999) Smart antennas for wireless communication. Prentice Hall, NJGoogle Scholar
  4. 4.
    Winters J.H. (1998) Smart antennas for wireless systems. IEEE Personal Communications Magazine 5: 23–27CrossRefGoogle Scholar
  5. 5.
    Godara, L. (1997). Application of antenna arrays to mobile communications, Part II: beamforming and direction-of-arrival considerations. In Proceedings of the IEEE (Vol. 85, No. 8, pp. 1195–1245).Google Scholar
  6. 6.
    Razavilar J., Rashid-Farrokhi F., Liu K.J.R. (1999) Software radio architecture with smart antennas: A tutorial on algorithms and complexity. IEEE Journal of Selected Areas in Communications, 17(4): 662–676CrossRefGoogle Scholar
  7. 7.
    Texas Instruments. (2002). TMS320C6711, TMS320C6711B, TMS320C6711C floating-point digital signal processors. Literature Number: SPRS088D. Texas, USA.Google Scholar
  8. 8.
    Xilinx. (2001). Virtex-II 1.5V field-programmable gate arrays. Xilinx Data Sheet (pp. 1–4).Google Scholar
  9. 9.
    Naguib, A. F. (1996). Adaptive antennas for CDMA wireless networks. Ph. D. Dissertation, Department of Electrical Engineering, Stanford University.Google Scholar
  10. 10.
    Choi S., Shim D. (2000) A novel adaptive beamforming algorithm for a smart antenna system in a CDMA mobile communication environment. IEEE Transactions in Vehicular Technology 49(5): 1793–1806CrossRefGoogle Scholar
  11. 11.
    Choi S., Choi J., Im H.-J., Choi B. (2002) A novel adaptive beamforming algorithm for antenna array CDMA systems with strong interferers. IEEE Transactions in Vehicular Technology 51(5): 808–816CrossRefGoogle Scholar
  12. 12.
    Yang J., Xi H., Yang F., Zhao Y. (2006) Fast adaptive blind beamforming algorithm for antenna array in CDMA systems. IEEE Transactions in Vehicular Technology 55(2): 549–558CrossRefGoogle Scholar
  13. 13.
    Migliore M.D. (2006) A beamforming algorithm for adaptive antennas operating in crowded CDMA signal environment. IEEE Transactions on Antennas and Propagation 54(4): 1354–1357CrossRefMathSciNetGoogle Scholar
  14. 14.
    Tavassoli, F., Abolhassani, B., Oraizi, H. (2006, September). A Simple adaptive beamforming algorithm for CDMA wireless communication systems. In Proceedings of IEEE PIMRC’06 (pp. 1–5).Google Scholar
  15. 15.
    Zamiri-Jafarian, H., & Rastgoo, H. (2006, June). Recursive maximum SINR blind beamforming algorithm for CDMA systems. In Proceedings of IEEE ICC’06 (Vol. 7, pp. 3323–3327).Google Scholar
  16. 16.
    Yang, J., Xi, H., & Yang, F. (2005, July). RLS-based blind adaptive beamforming algorithm for antenna array in CDMA systems. In Proceedings of International Conference on Information Acquisition (6 pp).Google Scholar
  17. 17.
    Tuan, L. M., Su, V. P., Kim, J., & Yoon, G. (2002, November). An MMSE-based beamforming algorithm for smart antenna applied to an MC-CDMA system with co-channel interference. In Proceedings of IEEE ICCS’02 (Vol. 2, pp. 1252–1256).Google Scholar
  18. 18.
    Eireiner, T., Muller, T., Luy, J.-F., & Owens, F. (2003, June). Implementation of a smart antenna system with an improved NCMA algorithm. In IEEE MTT-S International Microwave Symposium Digest (Vol. 3, pp. 1529–1532).Google Scholar
  19. 19.
    Kim, Y., Im, H., Park, J., Bahk, H., Kim, J., & Choi, S. (2002, November). Implementation of smart antenna base station with a novel searcher and tracker for CDMA 2000 1X. In Proceedings of IEEE ICCS’02 (Vol. 1, pp. 394–398).Google Scholar
  20. 20.
    Wu, J., Sheng, W.-X., Chan, K.-P., Chung, W.-K., Cheng, K.-K. M., & Wu, K.-L. (2002, June). Smart antenna system implementation based on digital beam-forming and software radio technologies. In IEEE MTT-S International Microwave Symposium Digest (Vol. 1, pp. 323–326).Google Scholar
  21. 21.
    Im, H., & Choi, S. (2000). Implementation of a smart antenna test-bed. In IEEE AP-S International Symposium & URSI Radio Science Meeting (pp. 952–955).Google Scholar
  22. 22.
    Choi, S., Lee, Y., & Hirasawa, K. (1997). Real-time design of a smart antenna system utilizing a modified conjugate gradient method for CDMA-Based Mobile Communications. In IEEE VTC’97 (Vol. 1, pp. 183–187).Google Scholar
  23. 23.
    Perez-Neira A., Mestre X., Fonollosa J.R. (2001) Smart antennas in software base stations. IEEE Communications Magazine 39(2): 166–173CrossRefGoogle Scholar
  24. 24.
    Pedersen, K. I., & Mogensen, P. E. (1999, May). Performance comparison of vector-RAKE receivers using different combining schemes and antenna array topologies. In Proceedings of IEEE VTC’99 (Vol. 1, pp. 233–237).Google Scholar
  25. 25.
    Lagunas, M. A., Vidal, J., & Pérez-Neira, A. I. (2000, November). Joint array combining and MLSE for single-user receivers in multipath gaussian multiuser channels. In Proceedings of IEEE JSAC’00 (Vol. 18, No. 11).Google Scholar
  26. 26.
    Winters J.H. (1984) Optimum Combining in Digital Mobile Radio with Cochannel Interference. IEEE Transactions on Vehicular Technology 33(3): 144–155CrossRefMathSciNetGoogle Scholar
  27. 27.
    Martinez, R., Garcia, L., de Haro, L., & Calvo, M. (2002, August). A DSP-based implementation of adaptive algorithms for a W-CDMA reverse link beamformer. In Proceedings of IEEE RAWCON’02 (pp. 141–144).Google Scholar
  28. 28.
    Garcia, L. G., Montava, C. P., & de Haro Ariet, L. (2005, September). Implementation of a setup module for a plug-and-play UMTS smart antenna. In Proceedings of IEEE PIMRC’05 (Vol. 4, pp. 2342–2346).Google Scholar
  29. 29.
    TIA/EIA Interim Standard. (1999). Physical Layer Standard for CDMA2000 spread spectrum systems. TIA/EIA/S-2000-2. Arlington, VA, USA: Telecommunications Industry Association.Google Scholar
  30. 30.
    Kucuk, K., Karakoc, M., Kavak, A., & Yigit, H. (2005, September). Design and hardware implementation of a novel smart antenna algorithm with using TI DSPs. In Proceedings of IEEE ISWCS’05 (pp. 596–600).Google Scholar
  31. 31.
    Veen J., Paulraj A. (1996) An analytical constant modulus algorithm. IEEE Transactions on Signal Processing 44(5): 1136–1155CrossRefGoogle Scholar
  32. 32.
    Ames P., Gabor J. (2000) The evolution of third generation cellular standards. Intel Technology Journal 2: 1–6Google Scholar
  33. 33.
    Kucuk, K. (2005). Implementation of smart antenna algorithms for CDMA2000 reverse link on digital signal processors with software radio. M.Sc. Thesis. at Kocaeli University.Google Scholar
  34. 34.
    Texas Instruments. (1998). TMS320C6201/6701 evaluation module user’s guide. Literature Number: SPRU269D. Texas, USA.Google Scholar
  35. 35.
    Texas Instruments. (2002). TMS320C6711, TMS320C6711B, TMS320C6711C Floating-point Digital Signal Processors. Literature Number: SPRS088D. Texas, USA.Google Scholar
  36. 36.
    Spectrum Digital, Inc. (2003). TMS320C6713 DSK Technical Reference, 506735-0001 Rev. A, Stafford, TX, USA.Google Scholar
  37. 37.
    Lapsley P., Bier J., Shoham A., Lee E.A. (1997) DSP Processor fundamentals: Architectures and features. Wiley-IEEE Press, New YorkzbMATHGoogle Scholar
  38. 38.
    Texas Instruments. (2001). Code composer studio getting started guide. TX.Google Scholar
  39. 39.
    MATLAB Link for Code Composer Studio® Development Tools 1.2 Release Notes,
  40. 40.
    Karakoc, M., & Kavak, A. (2004). Evaluation of smart antenna algorithms for CDMA2000 reverse link. Lecture Notes in Computer Science (Vol. 3042, pp. 1360–1365). Springer-Verlag.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Kerem Kucuk
    • 1
  • Adnan Kavak
    • 2
    Email author
  • Mustafa Karakoc
    • 3
  • Halil Yiǧit
    • 1
  • Caner Ozdemir
    • 4
  1. 1.Department of Electronic and Computer EducationKocaeli UniversityIzmitTurkey
  2. 2.Wireless Communications and Information Systems Research Centre, Department of Computer EngineeringKocaeli UniversityIzmitTurkey
  3. 3.Turkcell Telecommunication ServicesKartal, IstanbulTurkey
  4. 4.Department of Electrical and Electronics EngineeringMersin UniversityMersinTurkey

Personalised recommendations