Wireless Personal Communications

, Volume 49, Issue 1, pp 87–105 | Cite as

Enhancing Channel Estimation in Cognitive Radio Systems by means of Bayesian Networks

  • Panagiotis DemestichasEmail author
  • Apostolos Katidiotis
  • Kostas A. Tsagkaris
  • Evgenia F. Adamopoulou
  • Konstantinos P. Demestichas


This paper proposes enhancements to the channel(-state) estimation phase of a cognitive radio system. Cognitive radio devices have the ability to dynamically select their operating configurations, based on environment aspects, goals, profiles, preferences etc. The proposed method aims at evaluating the various candidate configurations that a cognitive transmitter may operate in, by associating a capability e.g., achievable bit-rate, with each of these configurations. It takes into account calculations of channel capacity provided by channel-state estimation information (CSI) and the sensed environment, and at the same time increases the certainty about the configuration evaluations by considering past experience and knowledge through the use of Bayesian networks. Results from comprehensive scenarios show the impact of our method on the behaviour of cognitive radio systems, whereas potential application and future work are identified.


Cognitive networks Channel-State Information (CSI) Machine learning Bayesian networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    European Radiocommunications Committee (ERC) (2002). European table of frequency allocations and utilizations frequency range 9 kHz to 275 GHz. ERC Report 25, January 2002.Google Scholar
  2. 2.
    Mitola J., Maguire G. Jr. (1999) Cognitive radio: making software radios more personal. IEEE Personal Communications Magazine 6(6): 13–18CrossRefGoogle Scholar
  3. 3.
    Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas In Communications 23(2): 201–220CrossRefGoogle Scholar
  4. 4.
    Balamuralidhar P., Prasad R. (2008) A context driven architecture for cognitive radio nodes. Wireless Personal Communications 45(3): 423–434CrossRefGoogle Scholar
  5. 5.
    End-to-End Efficiency (E3) project (2008).
  6. 6.
    Demestichas, P., Boscovic, D., Stavroulaki, V., Lee, A., & Strassner, J. (2006). m@ANGEL: Autonomic management platform for seamless wireless cognitive connectivity. IEEE Communications Magazine, 44(6).Google Scholar
  7. 7.
    Strassner, J. (2005). Policy-based network management: Solutions for the next generation. Morgan Kaufmann (Series in networking).Google Scholar
  8. 8.
    Neapolitan R.E. (2003) Learning Bayesian networks. Prentice-Hall, NJGoogle Scholar
  9. 9.
    Pearl J. (1988) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San FranciscoGoogle Scholar
  10. 10.
    Jensen F. (2001) Bayesian networks and decision graphs. Springer-Verlag, NY, USAzbMATHGoogle Scholar
  11. 11.
    Qi Jiang, Joachim Speidel, Chunming Zhao (2008) A joint OFDM channel estimation and ici cancellation for double selective channels. Wireless Personal Communications 45(1): 131–143CrossRefGoogle Scholar
  12. 12.
    Morelli M., Mengali U. (2001) A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Transactions on Signal Processing 49(12): 3065–3073CrossRefGoogle Scholar
  13. 13.
    Heath R.W., Giannakis G.B. (1999) Exploiting input cyclostationarity for blind channel identification in OFDM systems. IEEE Transactions on Signal Processing 47(3): 848–856CrossRefGoogle Scholar
  14. 14.
    Zhou S., Giannakis G.B. (2001) Finite-alphabet based channel estimation for OFDM and related multicarrier systems. IEEE Transactions on Communications 49(8): 1402–1414zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhou S., Muquet B., Giannakis G.B. (2002) Subspace-based (semi-) blind channel estimation for block precoded space-time OFDM. IEEE Transactions on Signal Processing 50(5): 1215–1228CrossRefGoogle Scholar
  16. 16.
    Petropulu A., Zhang R. (2004) Blind OFDM channel estimation through simple linear precoding. IEEE Transactions on Wireless Communications 3(2): 647–655CrossRefGoogle Scholar
  17. 17.
    Rashad, I., Budiarjo, I., & Nikookar, H. (2007). Efficient pilot pattern for OFDM-based cognitive radio channel estimation—Part 1. In Communications and Vehicular Technology in the Benelux, 2007 14th IEEE Symposium on (pp. 1–5, 15–15). November 2007.Google Scholar
  18. 18.
    Budiarjo, I., Rashad, I., & Nikookar, H. (2007). Efficient pilot pattern for OFDM-based cognitive radio channel estimation—Part 2. In Communications and Vehicular Technology in the Benelux, 2007 14th IEEE Symposium on (pp.1–5, 15–15). November 2007.Google Scholar
  19. 19.
    Soysal, A., Ulukus, S., & Clancy, C. (2008). Channel estimation and adaptive M-QAM in cognitive radio links. In Proc. IEEE International Conference on Communications (ICC) 08’, Beijing, China, 19th–23rd May, 2008.Google Scholar
  20. 20.
    Heckerman, D. (1995). A tutorial on learning with Bayesian networks. In Report No. MSR-TR-95–06, Microsoft Research.Google Scholar
  21. 21.
    Tetko I.V., Livingstone D.J., Luik A.I. (1995) Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences 35: 826–833Google Scholar
  22. 22.
    Khanafer, R., Moltsen, L., Dubreil, H., Altman, Z., & Barco, R. (2006). A Bayesian approach for automated troubleshooting for UMTS networks. In Proc. 17th IEEE Int’l Symp. Personal, Indoor and Mobile Radio Comm. (PIMRC ’06), August 2006.Google Scholar
  23. 23.
    Barco R., Wille V., Dı’ez L. (2005) System for automated diagnosis in cellular networks based on performance indicators. European Trans. Telecommunications 16(5): 399–409CrossRefGoogle Scholar
  24. 24.
    Barco, R., Lázaro, P., Díez, L., & Wille, V. (2008). Continuous versus discrete model in auto-diagnosis systems for wireless networks. IEEE Transactions on Mobile Computing, in press.Google Scholar
  25. 25.
    Koutsorodi A., Adamopoulou E., Demestichas K., Theologou M. (2007) Service configuration and user profiling in 4G terminals. Wireless Personal Communications 43(4): 1303–1321CrossRefGoogle Scholar
  26. 26.
    Demestichas, K., Koutsorodi, A., Adamopoulou, E., & Theologou, M. (2007). Modelling user preferences and configuring services in B3G devices. Wireless Networks in press.Google Scholar
  27. 27.
    Bauer, E., Koller, D., & Singer, Y. (1997). Update rules for parameter estimation in Bayesian networks. In Proceedings of the 13th Annual Conference on Uncertainty in AI (1997), pp. 3–13.Google Scholar
  28. 28.
    Zhang, S. Z., Yu, H., Ding, H., Yang, N. H., & Wang, X. K. (2003). An application of online learning algorithm for Bayesian network parameter. In 2003 International Conference on, Machine Learning and Cybernetics, Vol. 1, pp. 153–156, November 2003.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Panagiotis Demestichas
    • 1
    Email author
  • Apostolos Katidiotis
    • 1
  • Kostas A. Tsagkaris
    • 1
  • Evgenia F. Adamopoulou
    • 2
  • Konstantinos P. Demestichas
    • 2
  1. 1.University of PiraeusPiraeusGreece
  2. 2.National Technical University of AthensAthensGreece

Personalised recommendations