Link Performance of an ESPAR-Antenna Array in Rich Scattering and Clustered Channels

  • R. Bains
  • R. R. Müller
  • A. Kalis


This paper aims at evaluating the link performance of an electronically steerable passive array radiator (ESPAR) in both rich scattering and clustered channels. Previous work has shown that the performance of an ESPAR-antenna can be comparable to a 2 × 2 multiple-input-multiple-output (MIMO) system in a rich scattering environment. The design of the antenna patterns used for transmission was based on intuition, and therefore cannot be guaranteed to be optimal. In this paper, we design the antenna patterns by minimizing the average inner-product between signals that are transmitted with different antenna patterns. We also evaluate the performance of the ESPAR-antenna at higher spectral-efficiencies than previous literature has done. The performance in terms of spectral-efficiency is evaluated for both rich scattering environments and clustered channels, whereas the performance in terms of symbol error rate is evaluated for rich scattering channels only.


Compact antenna arrays ESPAR-antennas MIMO Passive antenna elements Single RF-frontend Spatial multiplexing 





Phase-shift keying


Quadrature amplitude modulation


Signal-to-noise ratio


  1. Telatar I.E. (1999) Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 10(6): 585–595CrossRefGoogle Scholar
  2. Foschini G.J., Gans M.J. (1998) On the limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 6: 311–335CrossRefGoogle Scholar
  3. Shiu D.S., Foschini G.J., Gans M.J., Kahn J.M. (2000) Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications 48(3): 502–513CrossRefGoogle Scholar
  4. Wennstrom, M., & Svantesson, T. (2001). An antenna solution for MIMO channels: The switched parasitic antenna. In Proceedings of the IEEE PIMRC’01, Sept. 2001 (Vol. 1, pp. A–159–A–163).Google Scholar
  5. Wallace J.W., Jensen M.A. (2004) Mutual coupling in MIMO wireless systems: A rigorous network theory analysis. IEEE Transactions on Wireless Communications 3(4): 1317–1325CrossRefGoogle Scholar
  6. Wallace J.W., Jensen M.A. (2004) Termination-dependent diversity performance of coupled antennas: Network theory analysis. IEEE Transactions on Antennas and Propagation 52(1): 98–105CrossRefGoogle Scholar
  7. Kildal P.S., Rosengren K. (2003) Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles. IEEE Antennas Wireless Propagation Letter 2(1): 9–13CrossRefGoogle Scholar
  8. Kalis, A., Kanatas, A. G., Carras, M., & Constantinides, A. G. (2006). On the performance of MIMO systems in the wavevector domain. In 15th IST Mobile and Wireless Communications Summit, June 2006.Google Scholar
  9. Müller, R., Bains, R., & Aas, J. A. (2005). A compact MIMO receiver antenna. In Proceedings 43rd Annual Allerton Conference on Communications, Control and Computing, Monticello, IL, USA, Sept. 2005.Google Scholar
  10. Kalis, A., Papadias, C., & Kanatas, A. G. (2007). An ESPAR antenna for beamspace-MIMO systems using PSK modulation schemes. In IEEE International Symposium on Wireless Communication Systems (ISWCS), June 2007 (pp. 5348–5353).Google Scholar
  11. Gyoda, K., & Ohira, T. (2000). Design of electronically steerable passive array radiator (ESPAR) antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium’00, July 2000 (Vol. 2, pp. 922–925).Google Scholar
  12. Ohira T., Iigusa K. (2004) Electronically steerable parasitic array radiator antenna. Electronics and Communications in Japan Part II 87(10): 25–45CrossRefGoogle Scholar
  13. Sawaya, T., Iigusa, K., Taromaru, M., & Ohira, T. (2004). Reactance diversity: Proof-of-concept experiments in an indoor multipath-fading environment with a 5-GHz prototype planar ESPAR antenna. In Consumer Communications and Networking Conference, Jan. 2004 (pp. 678–680).Google Scholar
  14. Kalis, A., & Carras, M. J. (2005). Aerial entropy and capacity of an MEA EM source. In 26th Symposium on Information Theory in the Benelux, May 2005.Google Scholar
  15. Morris M.L., Jensen M.A., Wallace J.W. (2005) Superdirectivity in MIMO systems. IEEE Transactions on Antennas and Propagation 53(9): 2850–2857CrossRefGoogle Scholar
  16. Schoonover R.W., Visser T.D. (2007) The power radiated by two correlated sources. Optics Communications 271(2): 323–326CrossRefGoogle Scholar
  17. Bikhazi N.W., Jensen M.A. (2007) The relationship between antenna loss and superdirectivity in MIMO systems. IEEE Transactions on Wireless Communications 6(5): 1796–1802CrossRefGoogle Scholar
  18. Hong Z., Lie K., Heath R.W., Sayeed A.M. (2003) Spatial multiplexing in correlated fading via the virtual channel representation. IEEE Journal on Selected Areas in Communications 21(5): 856–866CrossRefGoogle Scholar
  19. Hochwald B.M., Marzetta T.L. (2000) Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory 46(2): 543–564zbMATHCrossRefMathSciNetGoogle Scholar
  20. Foschini G.J., Gitlin R.D., Weinstein S.B. (1974) Optimization of two-dimensional signal constellations in the presence of Gaussian noise. IEEE Transactions on Communications 22(1): 28–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Electronics and TelecommunicationsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Athens Information TechnologyPaiania, AttikaGreece

Personalised recommendations