Wireless Personal Communications

, Volume 47, Issue 3, pp 399–415 | Cite as

Performance Enhancement of TCP in Dynamic Bandwidth Wired and Wireless Networks

  • Neng-Chung WangEmail author
  • Jong-Shin Chen
  • Yung-Fa HuangEmail author
  • Chi-Lun Chiou


In this paper, we propose a scheme that dynamically adjusts the slow start threshold (ssthresh) of TCP. The ssthresh estimation is used to set an appropriate ssthresh. A good ssthresh would improve the transmission performance of TCP. For the congestion avoidance state, we present a mechanism that probes the available bandwidth. We adjust the congestion window size (cwnd) appropriately by observing the round trip time (RTT) and reset the ssthresh after quick retransmission or timeout using the ssthresh estimation. Then the TCP sender can enhance its performance by using the ssthresh estimation and the observed RTT. Our scheme defines what is considered an efficient transmission rate. It achieves better utilization than other TCP versions. Simulation results show that our scheme effectively improves TCP performance. For example, when the average bottleneck bandwidth is close to 30% of the whole network bandwidth, our scheme improves TCP performance by at least 10%.


Congestion avoidance Congestion window Round trip time Slow start TCP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balakrishnan H., Seshan S. and Katz R.H. (1995). Improving reliable transport and handoff performance in cellular wireless networks. Wireless Networks 1(4): 469–481 CrossRefGoogle Scholar
  2. 2.
    Balakrishnan, H., Seshan, S., & Katz, R. H. (1995). Improving TCP/IP performance over wireless networks. In Proceedings of the ACM MOBICOM, (pp. 2–11), November 1995.Google Scholar
  3. 3.
    Bakre, A., & Badrinath, B. R. (1995). I-TCP: Indirect TCP for mobile hosts. In Proceedings of the 15th International Conference Distributed Computing Systems (ICDCS), May 1995.Google Scholar
  4. 4.
    Braden, R. T. (1989). Requirements for internet hosts-communication layers. In RFC 1122, October 1989.Google Scholar
  5. 5.
    Brakmo L.S. and Peterson L.L. (1995). TCP Vegas: End-to-end congestion avoidance on a global internet. IEEE Journal on Selected Areas in Communications 13(8): 1465–1480 CrossRefGoogle Scholar
  6. 6.
    Brown K. and Singh S. (1997). M-TCP: TCP for mobile cellular networks. ACM SIGCOMM Computer Communication Review 27(5): 19–43 CrossRefGoogle Scholar
  7. 7.
    Capone A., Fratta L. and Martignon F. (2004). Bandwidth estimation schemes for TCP over wireless networks. IEEE Transactions on Mobile Computing 3(2): 129–143 CrossRefGoogle Scholar
  8. 8.
    Casetti C., Gerla M., Mascolo S., Sanadidi M.Y. and Wang R. (2002). TCP westwood: End-to-end congestion control for wired/wireless networks. Wireless Networks 8(5): 467–479 zbMATHCrossRefGoogle Scholar
  9. 9.
    Da Costa G.M.T. and Sirisena H.R. (2003). Freeze TCP with timestamps for fast packet loss recovery after disconnections. Computer Communications 26(15): 1792–1799 CrossRefGoogle Scholar
  10. 10.
    Desimon, A., Chuah, M. C., & Yue, O. (1993). Throughput performance of transport-layer protocols over wireless LANs. In Proceedings of the IEEE GLOBECOM (Vol. 1), (pp. 542–549), December 1993.Google Scholar
  11. 11.
    Elaarag H. (2002). Improving TCP performance over mobile networks. ACM Computing Surveys 34(3): 357–374 CrossRefGoogle Scholar
  12. 12.
    Fall, K., & Floyd, S. (1996). Simulation-based comparisons of Tahoe, Reno, and SACK TCP. In Proceedings of the ACM Computer Communications Review, pp. 5–21, July 1996.Google Scholar
  13. 13.
    Fu Z., Luo H. and Zerfos P. (2005). The impact of multihop wireless channel on TCP performance. IEEE Transactions on Mobile Computing 4(2): 209–221 CrossRefGoogle Scholar
  14. 14.
    Izumikawa, H., Yamaguchi, I., & Katto, J. (2004). An efficient TCP with explicit handover notification for mobile networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (Vol. 2), (pp. 647–652), March 2004.Google Scholar
  15. 15.
    Mascolo, S., Casetti, C., Gerla, M., & Sanadidi, M. (2001). TCP westwood: Bandwidth estimation for enhanced transport over wireless links. In Proceedings of the ACM MOBICOM (pp. 287–297), July 2001.Google Scholar
  16. 16.
    Mo, J., Anantharam, V., La, R. J., & Walrand, J. (1999). Analysis and comparison of TCP Reno and Vegas. In Proceedings of the IEEE INFOCOM (Vol. 3), (pp. 1556–1563), March 1999.Google Scholar
  17. 17.
    Nanda S., Ejzak R. and Doshi B.T. (1994). A retransmission scheme for circuit-mode data on wireless links. IEEE Journal on Selected Areas in Communications 12(8): 1338–1352 CrossRefGoogle Scholar
  18. 18.
    Postel, J. B. (1981). Transmission control protocol. In RFC 793, September 1981.Google Scholar
  19. 19.
    Sinha, P., Venkitaraman, N., Sivakumar, R., & Bhargavan, V. (1999). WTCP: A reliable transport protocol for wireless wide-area networks. In Proceedings of the ACM MOBICOM (pp. 231–241).Google Scholar
  20. 20.
    Stevens, W. R. (1994). TCP/IP Illustrated (Vol. 1). Addison-Wesley.Google Scholar
  21. 21.
    Tsaoussidis V. and Matta I. (2002). Open issues on TCP for mobile computing. Wireless Communication and Mobile Computing 2(1): 3–20 CrossRefGoogle Scholar
  22. 22.
    Wang, K.-Y., & Tripathi, S.-K. (1998). Mobile-end transport protocol: An alternative to TCP/IP over wireless links. In Proceedings of the IEEE INFOCOM (Vol. 3), (pp. 1046–1053), March 1998.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational United UniversityMiao-LiTaiwan, R.O.C.
  2. 2.Graduate Institute of Networking and Communication EngineeringChaoyang University of TechnologyTaichungTaiwan, R.O.C.
  3. 3.Department of Computer Science and Information EngineeringChaoyang University of TechnologyTaichungTaiwan, R.O.C.

Personalised recommendations