Advertisement

Wireless Personal Communications

, Volume 46, Issue 3, pp 329–350 | Cite as

On the Transceiver Types of IR-UWB Systems at Sub-Nyquist Sampling Rates

  • İsmail GüvençEmail author
  • Hüseyin Arslan
Article

Abstract

In this paper, we present a unified performance analysis for different impulse radio (IR) ultra-wideband (UWB) transceiver types employing various modulation options and operating at sub-Nyquist sampling rates. Stored reference (SR), transmitted reference (TR), and energy detector (ED) receivers are considered employing one of the binary phase shift keying (BPSK), pulse position modulation (PPM), and on-off keying (OOK) modulation types. Realistic UWB channel models (the IEEE 802.15.4a channels) and practical pulse shapes (the root-raised cosine pulse) are used to characterize the statistics of the captured energies of different transceiver types at low sampling rates. The bit error rate (BER) expressions for different transceiver/modulation types are provided explicitly in additive white Gaussian noise channels. In multipath channels, the BER expressions are conditioned on the captured energies; then, the captured energy histograms at sub-Nyquist rates are used towards a semi-analytic evaluation of the BER for different transceiver/modulation combinations. The analyses are then verified via simulations using IEEE 802.15.4a channel models. The results show that in addition to their lower implementation complexities, the TR and ED receivers may be more favorable compared to SR receivers at low sampling rates in terms of their BER characteristics as well.

Keywords

UWB Transceiver types Sub-Nyquist sampling Bit error rate analysis Modulation types Rake combining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Win, M. Z., & Scholtz, R. A. (1997). Energy capture vs. correlator resources in ultra-wide bandwidth indoor wireless communication channels. In Proc. IEEE Military Commun. Conf. (MILCOM), Vol. 3, Monterey, CA, Nov. 1997, pp. 1277–1281.Google Scholar
  2. Newaskar, P. P., Blazquez, R., & Chandrakasan, A. R. (2001). A/D precision requirements for an ultra-wideband radio receiver. In Proc. IEEE Workshop on Signal Processing Systems (SIPS), San Diego, CA, Oct. 2001, pp. 270–275.Google Scholar
  3. Rajwani, F., & Beaulieu, N. C. (2005). Simplified bit error rate analysis of PAPM-UWB with MRC and EGC in lognormal fading channels. In Proc. IEEE Conf. Commun. (ICC), Vol. 5, Seoul, Korea, May 2005, pp. 2886–2889.Google Scholar
  4. Choi, J. D., & Stark, W. E. (2002). Performance analysis of RAKE receivers for ultra-wideband communications with PPM and OOK in multipath channels. In Proc. IEEE Conf. Commun. (ICC), Vol. 3, New York, NY, Apr. 2002, pp. 1969–1973.Google Scholar
  5. Choi J.D., Stark W.E. (2002). Performance of ultra-wideband communications with suboptimal receivers in multipath channels. IEEE J. Select. Areas Commun. 20(9): 1754–1766CrossRefGoogle Scholar
  6. Simon M.K., Alouini M.S. (1998). A unified approach to the performance analysis of digital communication over generalized fading channels. Proceedings of the IEEE 86(9): 1860–1877CrossRefGoogle Scholar
  7. Rajeswaran, A., Somayazulu, V. S., & Foerster, J. R. (2003). RAKE performance for a pulse based UWB system in a realistic UWB indoor channel. In Proc. IEEE Int. Conf. Commun. ICC, Vol. 4, Anchorage, Alaska, May 2003, pp. 2879–2883.Google Scholar
  8. Choi, J. D., & Stark, W. (2003). Performance of UWB communications with imperfect channel estimation. In Proc. IEEE Military Commun. Conf. (MILCOM), Vol. 2, Boston, MA, Oct. 2003, pp. 915–920.Google Scholar
  9. Niu, H., Ritcey, J. A., & Liu, H. (2003). Performance UWB RAKE receivers with imperfect tap weights. In Proc. IEEE Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 4, Hong Kong, Apr. 2003, pp. 125–128.Google Scholar
  10. Sheng, H., You, R., & Haimovich, A. M. (2004). Performance analysis of ultra-wideband Rake receivers with channel delay estimation errors. In Proc. Conf. on Information Sciences and Syst. (CISS), Princeton, NJ, Mar. 2004, pp. 921–926.Google Scholar
  11. Chen, M. S. W., & Brodersen, R. W. (2004). The impact of a wideband channel on UWB system design. In Proc. IEEE Military Commun. Conf. (MILCOM), Monterey, CA, Oct. 2004.Google Scholar
  12. Qiu, R. C. (2004). A generalized time domain multipath channel and its application in ultra-wide-band (UWB) wireless optimal receiver design: System performance analysis. In Proc. Wireless Commun. Networking Conf. (WCNC), Vol. 2, Atlanta, GA, Apr. 2004, pp. 901–907.Google Scholar
  13. Wilson, R. D., & Scholtz, R. A. (2003). Template estimation in ultra-wideband radio. In Proc. IEEE Asilomar Conf. Signals, Systems, Computers, Vol. 2, Pacific Grove, CA, Nov. 2003, pp. 1244–1248.Google Scholar
  14. Taniguchi, K., & Kohno, R. (2004). Design and analysis of template waveform for receiving UWB signals. In Proc. IEEE Conf. on Ultrawideband Syst. Technol. (UWBST), Kyoto, Japan, May 2004, pp. 125–129.Google Scholar
  15. Chung, M. H., & Scholtz, R. A. (2004). Comparison of transmitted- and stored-reference systems for ultra-wideband communications. In Proc. IEEE Military Commun. Conf. (MILCOM), Vol. 1, Monterey, CA, Oct. 2004, pp. 521–527.Google Scholar
  16. Durisi G., Benedetto S. (2005). Comparison between coherent and non-coherent receivers for UWB communications. Eurosip J. Applied Sig. Processing 3, 359–368CrossRefGoogle Scholar
  17. Paquelet, S., Aubert, L. M., & Uguen, B. (2004). An impulse radio asynchronous transceiver for high data rates. In Proc. Ultrawideband Syst. Technol. (UWBST), Kyoto, Japan, May 2004, pp. 1–5.Google Scholar
  18. Yang, L., Giannakis, G. B., & Swami, A. (2004). Noncoherent ultra-wideband radios. In Proc. IEEE Military Commun. Conf. (MILCOM), Vol. 2, Monterey, CA, Oct. 2004, pp. 786–791.Google Scholar
  19. Chao, Y. L., & Scholtz, R. A. (2004). Multiple access performance of ultra-wideband transmitted reference systems in multipath environments. In Proc. Wireless Commun. Networking Conf. (WCNC), Atlanta, GA, Apr. 2004, pp. 1788–1793.Google Scholar
  20. Tian, Z., & Lottici, V. (2003). Efficient timing acquisition in dense multipath for UWB communications. In Proc. IEEE Vehic. Technol. Conf. (VTC), Vol. 2, Orlando, FL, Oct. 2003, pp. 1318–1322.Google Scholar
  21. Molisch, A. F., Balakrishnan, K., Chong, C. C., Emami, S., Fort, A., Karedal, J., Kunisch, J., Schantz, H., Schuster, U., & Siwiak, K. (2004). IEEE 802.15.4a channel model – final report. Sept., 2004. [Online]. Available: http://www.ieee802.org/15/pub/TG4a.html
  22. Guvenc, I., & Arslan, H. (2003). On the modulation options for UWB systems. In Proc. IEEE Military Commun. Conf. (MILCOM), Vol. 2, Boston, MA, Oct. 2003, pp. 892–897.Google Scholar
  23. Sahin, M. E., Guvenc, I., & Arslan, H. (2005). Optimization of energy detector receivers for UWB systems. In Proc. IEEE Vehic. Technol. Conf. (VTC), vol. 2, Stockholm, Sweden, June 2005, pp. 1386–1390.Google Scholar
  24. Wu, X., Wu, L., & Tian, Z. (2004). Performance analysis of UWB impulse radios with noisy template reception. In Proc. IEEE Asilomar Conf. Signals, Systems, Computers, Vol. 2, Pacific Grove, CA, Nov. 2004, pp. 1501–1505.Google Scholar
  25. Leus, G., & Van-Der-Veen, A. J. (2005). A weighted autocorrelation receiver for transmitted reference ultra wideband communications. In Proc. IEEE Signal Processing Advances in Wireless Communications (SPAWC), June 2005, pp. 965–969.Google Scholar
  26. Chao, Y. L., & Scholtz, R. A. (2004). Weighted correlation receivers for ultra-wideband transmitted reference systems. In IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2004, pp. 66–70.Google Scholar
  27. Romme, J., & Durisi, G. (2004). Transmit reference impulse radio systems using weighted correlation. In Proc. IEEE Ultrawideband Syst. Technol. (UWBST), Kyoto, Japan, May 2004, pp. 141–145.Google Scholar
  28. Romme, J., & Witrisal, K. (2005). On transmitted-reference UWB systems using discrete- time weighted autocorrelation. In Proc. IEEE Vehic. Technol. Conf. (VTC), Stockholm, Sweden, May 2005.Google Scholar
  29. Tian, Z., & Sadler, B. M. (2005). Weighted energy detection for ultra-wideband signals. In Proc. IEEE Signal Processing Advances in Wireless Communications (SPAWC), New York City, NY, June 2005, pp. 1069–1072.Google Scholar
  30. Orndorff, A. M. (2004). Transceiver design for ultra-wideband communications. Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, May 2004.Google Scholar
  31. Anamalai, A., Deora, G., & Tellambura, C. (2003). Unified analysis of generalized selection diversity with normalized threshold test per branch. In Proc. IEEE Wireless Commun. Networking Conf. (WCNC), Vol. 2, New Orleans, LA, Mar. 2003, pp. 752–756.Google Scholar
  32. Wang, T., Chen, Z. N., & Chen, K. (2005). Effect of selecting antenna and template on ber performance in pulsed UWB wireless communication systems. In Proc. IEEE Int. Workshop on Antenna Technology (IWAT), Marina Mandarin, Singapore, Mar. 2005, pp. 446–449.Google Scholar
  33. Chen Z.N., Wu X.H., Li H.F., Yang N., Chia M.Y.W. (2004). Considerations for source pulses and antennas in UWB radio systems. IEEE Transactions on Antennas and Propagation 52(7): 1739–1748CrossRefGoogle Scholar
  34. Shan D.M., Chen Z.N., Wu X.H. (2005). Signal optimization for UWB radio systems. IEEE Transactions on Antennas and Propagation 53(7): 2178–2184CrossRefGoogle Scholar
  35. Guvenc, I., & Arslan, H. (2003). Performance evaluation of UWB systems in the presence of timing jitter. In Proc. IEEE Conf. Ultrawideband Syst. Technol. (UWBST), Nov. 2003, pp. 136–141.Google Scholar
  36. Celebi, H., & Arslan, H. (2005). Cross-modulation interference for pulse position modulated UWB signals. In Proc. IEEE Military Commun. Conf. (MILCOM), Atlantic City, NJ, Oct. 2005.Google Scholar
  37. Bottomley G.E., Ottosson T., Wang Y.P.E. (2005). A generalized RAKE receiver for interference suppression. IEEE Journal on Selected Areas in Communications 18(8): 1536–1545CrossRefGoogle Scholar
  38. Bergel, I., Fishler, E., & Messer, H. (2002). Narrowband interference suppression in time-hopping impulse radio systems. In Proc. IEEE Conf. Ultrawideband Syst. Technol. (UWBST), Baltimore, MD, May 2002, pp. 303–307.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.DoCoMo USA LabsPalo AltoUSA
  2. 2.Electrical Engineering DepartmentUniversity of South FloridaTampaUSA

Personalised recommendations