Wireless Personal Communications

, Volume 46, Issue 1, pp 83–98 | Cite as

A Novel Environment Characterization Metric for Clustered MIMO Channels

Used to Validate a SAGE Parameter Estimator
  • Nicolai Czink
  • Giovanni Del Galdo
  • Xuefeng Yin
  • Ernst Bonek
  • Juha Ylitalo


In this work we introduce a novel metric for characterizing the double-directional propagation environment and use this metric to assess the performance of a SAGE parameter estimator for MIMO channels. Using the IlmProp, a geometry-based MIMO channel modeling tool, we construct synthetic channels for three different scenarios showing: (i) well separated clusters containing dense propagation paths, and single-bounce scattering; (ii) partly overlapping clusters containing widely spread propagation paths, and single-bounce scattering; (iii) unclustered multipath components (“rich scattering”), and double-bounce-only scattering. We model the scatterers and the receiver in the environment as fixed, but the transmitter as moving. The Initialization and Search-Improved SAGE (ISIS) estimation tool is used to extract the propagation paths from the constructed channels. Both true and estimated paths are fed to the new system-independent metric which genuinely reflects the structure of the channel and the compactness of the propagation paths. We use this metric to decide on the accuracy of the channel estimator. The results show a convincing agreement between true and estimated paths.


MIMO channel Performance metrics Clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 25.996, G. T. 3rd Generation Partnership Project; Technical specification group radio access network; Spatial channel model for MIMO simulations (release 6). V6.1.0.Google Scholar
  2. Correia, L. (Ed.). (2006). Mobile broadband multimedia networks. Academic Press.Google Scholar
  3. Czink, N., Bonek, E., Hentilä, L., Nuutinen, J.-P., & Ylitalo, J. (2006). Cluster-based MIMO channel model parameters extracted from indoor time-variant measurements. In IEEE GlobeCom 2006. San Francisco, USA.Google Scholar
  4. Del Galdo, G., Haardt, M., & Schneider, C. (2003). Geometry-based channel modelling of MIMO channels in comparison with channel sounder measurements. Advances in Radio Science—Kleinheubacher Berichte (pp. 117–126). More information on the model, as well as the source code and some exemplary scenarios can be found at http://tu-ilmenau.de/ilmprop
  5. El-Sallabi, H., Baum, D., Zetterberg, P., Kyösti, P., Rautiainen, T., & Schneider, C. (2006). Wideband spatial channel model for MIMO systems at 5 GHz in indoor and outdoor environments. In Proceedings IEEE VTC’06 Spring. Melbourne, Australia.Google Scholar
  6. Fleury B.H. (2000). First- and second-order characterization of direction dispersion and space selectivity in the radio channel. IEEE Transactions on Information Theory 46(6): 2027–2044MATHCrossRefGoogle Scholar
  7. Fleury B.H., Tschudin M., Heddergott R., Dahlhaus D., Pedersen K.I. (1999). Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE Journal on Selected Areas in Communications 3: 434–450CrossRefGoogle Scholar
  8. Fleury, B. H., Yin, X., Jourdan, P., & Stucki, A. (2003). High-resolution channel parameter estimation for communication systems equipped with antenna arrays. In Proceedings of 13th IFAC Symposium on System Identification (SYSID 2003). Rotterdam, The Netherlands (ISC-379).Google Scholar
  9. Fleury, B. H., Yin, X., Rohbrandt, K. G., Jourdan, P., & Stucki, A. (2002). Performance of a high-resolution scheme for joint estimation of delay and bidirection dispersion in the radio channel. In Proceedings of IEEE Vehicular Technology Conference. (Vol. 1) VTC 2002 Spring, pp. 522–526.Google Scholar
  10. Landmann, M., & Del Galdo, G. (2004). Efficient antenna description for MIMO channel modelling and estimation. In European microwave week. Amsterdam, The Netherlands.Google Scholar
  11. Mustonen, M., Suvikunnas, P., & Vainikainen, P. (2005). Reliability analysis of multidimensional propagation channel characterization. In WPMC. Aalborg, Denmark.Google Scholar
  12. Pal, A., Beach, M., & Nix, A. (2005). A quantification of 3-D directional spread from small-scale fading analysis. In COST 273 Post-Project Meeting. Lisbon, Portugal.Google Scholar
  13. Pal A., Beach M., Nix A. (2006). A quantification of 3-D directional spread from small-scale fading analysis. In IEEE International Conference on Communications. Istanbul, TurkeyGoogle Scholar
  14. Steinbauer M., Molisch A., Bonek E. (2001). The double-directional radio channel. IEEE Antennas and Propagation Magazine 43(4): 51–63CrossRefGoogle Scholar
  15. Steinbauer M., Özcelik H., Hofstetter H., Mecklenbräuker C., Bonek E. (2002). How to quantify multipath separation. IEICE Transactions on Electronics E85(3): 552–557Google Scholar
  16. Thomä, R. S., Hampicke, D., Landmann, M., Richter, A., & Sommerkorn, G. (2003). Measurement-based channel modelling (MBPCM). In ICEAA, Torino.Google Scholar
  17. Yin, X., Fleury, B. H., Jourdan, P., & Stucki, A. (2003). Polarization estimation of individual propagation paths using the SAGE algorithm. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Beijing, China.Google Scholar

Copyright information

© Springer Science + Business Media LLC 2007

Authors and Affiliations

  • Nicolai Czink
    • 1
    • 4
  • Giovanni Del Galdo
    • 2
  • Xuefeng Yin
    • 3
  • Ernst Bonek
    • 4
  • Juha Ylitalo
    • 5
  1. 1.Telecommunications Research Center Vienna (ftw.)ViennaAustria
  2. 2.Communications Research LaboratoryIlmenau University of TechnologyIlmenauGermany
  3. 3.Department of Electronics SystemsAalborg UniversityAalborgDenmark
  4. 4.Institute of Communications and Radio-Frequency EngineeringVienna University of TechnologyViennaAustria
  5. 5.ElektrobitOuluFinland

Personalised recommendations