Wireless Personal Communications

, Volume 43, Issue 4, pp 1727–1740 | Cite as

Dynamic Resource Allocation for Beyond 3G Cellular Networks

  • Dinh Thuy Phan Huy
  • Jonathan Rodriguez
  • Atílio Gameiro
  • Rahim Tafazolli
Article
  • 86 Downloads

Abstract

The Multicarrier CDMA Transmission Techniques for Integrated Broadband Cellular Systems (MATRICE) project addresses a candidate solution for a Beyond 3G (B3G) air-interface based on Multi-Carrier Code Division Multiple Access (MC-CDMA). It investigates dynamic resource allocation strategies at the Medium Access Control (MAC) layer to support the transport of Internet Protocol (IP) packets over the air-interface in a cost effective manner and maximise the cell capacity with a target QoS. A candidate Dynamic Resource Allocation (DRA) protocol architecture is proposed that is based on cross-layer signalling to provide reactive resource allocation according to the fast channel and traffic variations. In-line with B3G expectations, the proposed DRA handles a very large number of users with inherent flexibility and granularity necessary to support heterogeneous traffic, and still with limited complexity. Thanks to the modular architecture of the DRA, various scheduling policies are investigated and compared in terms of capacity and reactivity to the system environment. Simulation results have shown that the MATRICE system has the potential to deliver broadband heterogenous services in a cost-effective manner, and emerge as a propespective candidate air-interface for B3G cellular networks.

Keywords

Dynamic resource allocation Beyond3G MC-CDMA LTE Scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GPP. (2003). High speed downlink packet access: Physical layer aspects (Release 5). 3GPP Tech. Spec. TS 25.858.Google Scholar
  2. Hope, S., Marx, F., Arndt, M., Delautre, A., Buracchini, E., Goria, P., et al. (2004). End-to-end reconfigurability system scenarios. 11th Meeting, WG6, Wireless World Research Forum, Oslo, Norway.Google Scholar
  3. Kaiser, S., Durand, Y., Hérault, L., Hérlard, J. F., Mottier, D., Gameiro, A., et al. (2004). 4G MC-CDMA multi antenna system on chip for radio enhancements. In Proc. 13th IST Mobile and Wireless Communication Summit.Google Scholar
  4. ITU-R. (2003). Vision, framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000. Draft new recommendation ITU-R M. [imt-vis] [doc. 8/110].Google Scholar
  5. Acx, A. G., Aguiar, R. L., Bauer, F., Berens, F., Cordier, P., Hérault, L., et al. (2003). Reference scenario specification: Final description. Tech. Rep. IST-2001-32620 MATRICE D1.4.Google Scholar
  6. Brunel, L., Guégen, A., Mottier, D., Des Noes, M., Alves, F., Morgado, A., et al. (2004). Physical layer simulation chain description. Tech. Rep. IST-2001-32620 MATRICE D3.1.Google Scholar
  7. GPP. (2001). Physical layer aspects of UTRA high speed downlink packet access (Release 4). Tech. Rep. 3GPP TR 25.848.Google Scholar
  8. Knopp, R., & Humblet, P. A. (1995). Information capacity and power control in single-cell multiuser communications. In Proc. ICC 95, Vol. 1 (pp. 331–335).Google Scholar
  9. Bender, P., Black, P., Grob, M., Padovani, R., Sindhushayana, N., & Viterbi, A., et al. (2000). CDMA/HDR: A bandwidth efficient wireless high speed data service for nomadic users. IEEE Communications Magazine, 70–77.Google Scholar
  10. GPP. (2004). Feasibility study for OFDM for UTRAN enhancement. Tech. Rep. 3GPP TR 25.892.Google Scholar
  11. GPP2. (2002). 1x EV-DV evaluation methodology. WG5, Evaluation Ad Hoc.Google Scholar
  12. France Telecom R&D. (2004). WCDMA-HSDPA system level simulator calibration. Montreal, Canada, Tech. Rep. 3GPP R1-04-0499.Google Scholar
  13. Li, Y., & Huang, X. (2000). The generation of independent Rayleigh faders. In Proc. ICC 2000 – IEEE International Conference on Communications, no. 1 (pp. 41–45).Google Scholar
  14. Medbo, J., Anderson, H., Scramm, P., Asplud, H., & Berg, J. E. et al. (1998). Channel models for HIPERLAN/2 in different indoor scenarios. Tech. Rep. COST259 TD(98), Bradford, UK.Google Scholar
  15. Cai, X., & Giannakis, G. B. et al. (2003). IEEE, A two-dimensional channel simulation model for shadowing processes. IEEE Transactions on Vehicular Technology, 52(6).Google Scholar
  16. Siaud, I., & Morin, B. (1999). Investigations on radio propagation channel measurements at 2.2 GHz and 3.5 GHz for the fixed wireless access in an urban areas. Annales des Télécommunications, 54, N°9–10.Google Scholar
  17. Hämäläinen, S., Slanina, P., Hartman, M., Lappetelainen, A. & Holma, H. et al. (1997). A novel interface between link and system level simulations. In Proc. ACTS Mobile Telecommunications Summit, (pp. 599–604).Google Scholar
  18. Bauer, F., Berens, F., Phan Huy, D. T., Rodriguez, J., & Yang, X. (2004). System level simulation results—multi-cell environment. Tech. Rep. IST-2001-32620 MATRICE D4.6.Google Scholar
  19. ETSI. (1998). Universal mobile telecommunications system (UMTS); selection procedures for the choice of radio transmission technologies of the UMTS. Tech Rep TR101 112 UMTS 30.03 v3.2.0.Google Scholar
  20. Bonald, T. (2004). A score-based opportunistic scheduler for fading radio channels. In Proc. European Wireless.Google Scholar
  21. GPP. (2006). Physical layer aspects for evolved Universal terrestrial radio access (Release 7). 3GPP Tech. Rep. TS 25.814.Google Scholar

Copyright information

© Springer Science + Business Media LLC 2007

Authors and Affiliations

  • Dinh Thuy Phan Huy
    • 1
  • Jonathan Rodriguez
    • 2
  • Atílio Gameiro
    • 2
  • Rahim Tafazolli
    • 3
  1. 1.France Télécom R&DIssy-Les-MoulineauxFrance
  2. 2.Instituto Telec./Univ. AveiroAveiroPortugal
  3. 3.CCSR/Univ. of SurreyGuildfordUK

Personalised recommendations