Wireless Personal Communications

, Volume 43, Issue 4, pp 1419–1433 | Cite as

Bandwidth efficient MT-DS-SS via reduced subcarrier frequency spacing

Article

Abstract

We investigate modifications to conventional multitone direct-sequence spread spectrum (MT-DS-SS) signaling to improve spectral efficiency, for high-data-rate systems with small processing gain. Reduction in subcarrier frequency spacing to half the symbol rate improves bandwidth efficiency at no cost in complexity or performance. Via both analysis and simulations, we provide example results that illustrate the attractive performance and throughputs attainable with reduced frequency spacing. We extend study to synchronous multiuser transmission, and show that our best spectrally efficient MT-DS-SS scheme outperforms the conventional MT-DS-SS in a dispersive multiuser environment.

Keywords

Spread spectrum Multicarrier modulation Dispersive channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kondo S., Milstein L.B. (1996). Performance of multicarrier DS CDMA systems. IEEE Transactions on Communications 44(2): 238–246CrossRefGoogle Scholar
  2. 2.
    Vandendorpe L. (1995). Multitone spread spectrum multiple access communications system in a multipath rician fading channel. IEEE Transactions on Vehicular Technology 44(2): 327–337CrossRefGoogle Scholar
  3. 3.
    Hara S., Prasad R. (1997). Overview of multicarrier CDMA. IEEE Communications Magazine 35(12): 126–133CrossRefGoogle Scholar
  4. 4.
    Moshavi S. (1996). Multi-user detection for DS-CDMA communications. IEEE Communications Magazine 34(10): 124–136CrossRefGoogle Scholar
  5. 5.
    Matolak, D. W., Deepak, V., & Alder, F. (2002, June). Performance of multitone & multicarrier DS-SS in the Presence of Narrowband Interference. Proc. 12th MPRG/Virginia Tech Symp. on Wireless Personal Comm., 5–7.Google Scholar
  6. 6.
    Matolak, D. W., Deepak, V., & Alder, F. A. (2002, September). Performance of multitone and multicarrier direct sequence spread spectrum in the presence of partial-band pulse jamming/interference. Proceedings of IEEE Vehicular Technology Conference (VTC Fall 2002), Vancouver, Canada, 24–29.Google Scholar
  7. 7.
    Matolak, D. W., Deepak, V., & Alder, F. (2002). Performance of multitone & multicarrier DS-SS in the presence of imperfect phase synchronization. Proc. MILCOM 2002, Anaheim, CA, 7–10.Google Scholar
  8. 8.
    Li H., Matolak D.W. (2005). Phase noise and fading effects on system performance in MT-DS-SS. IEEE Transactions Vehicular Technology 54(5): 1759–1767CrossRefGoogle Scholar
  9. 9.
    Yang, L-L., & Hanzo, L. (2002). Performance of generalized multicarrier DS-CDMA over nakagami-m fading channels. IEEE Transactions Communications, 50(6).Google Scholar
  10. 10.
    Sen, I. (2004). Bandwidth efficient reduced complexity MT-DS-SS via reduced subcarrier frequency spacing. Master of Science Thesis, Ohio University.Google Scholar
  11. 11.
    Proakis J.G. (1995). Digital Communications (3rd ed.). New York, NY, McGraw-HillGoogle Scholar
  12. 12.
    Garg V.K. (2000). IS-95 CDMA and cdma2000. Upper Saddle River, NJ, Prentice-HallGoogle Scholar
  13. 13.
    Matolak, D. W., Sen, I., & Xiong, W. (2005). Potential multicarrier and spread spectrum systems for future aviation data links. IEEE Aerospace Conference, 5–12, Big Sky, MT.Google Scholar

Copyright information

© Springer Science + Business Media LLC 2007

Authors and Affiliations

  1. 1.School of EECSOhio UniversityAthensUSA

Personalised recommendations