Advertisement

Wireless Personal Communications

, Volume 39, Issue 3, pp 343–359 | Cite as

Medium Access Control for Integrated Multimedia Wireless Access with the Use of a Video Packet Discard Scheme

  • P. Koutsakis
  • M. Vafiadis
Article

Abstract

A well designed Medium Access Control (MAC) protocol for wireless networks should provide an efficient mechanism to share the limited bandwidth resources, and satisfy the diverse and usually contradictory Quality of Service (QoS) requirements of each traffic class. In this paper a new MAC protocol for next generation wireless communications is presented and investigated. The protocol uses a combined Packet Discard/Forward Error Correction scheme in order to efficiently integrate MPEG-4 videoconference packet traffic with voice, SMS data and web packet traffic over a noisy wireless channel of high capacity. Our scheme achieves high aggregate channel throughput in all cases of traffic load, while preserving the Quality of Service (QoS) requirements of each traffic type, and is shown to clearly outperform DPRMA, another efficient MAC protocol proposed in the literature for multimedia traffic integration over wireless networks.

Keywords

wireless cellular communications multimedia integrated access MAC protocol wireless channel errors packet discard scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Chen, L. Huang, S. Kumar and C.-C. J. Kuo, Radio Resource Management for Multimedia QoS Support in Wireless Networks, Kluwer Academic Publishers, 2004.Google Scholar
  2. 2.
    I. F. Akyildiz, J. McNair, L. C. Martorell, R. Puigjaner, and Y. Yesha, “Medium Access Control Protocols for Multimedia Traffic in Wireless Networks”, IEEE Network, Vol. 13, No. 4, pp. 39–47, 1999.CrossRefGoogle Scholar
  3. 3.
    D. Raychaudhuri, L.J. French, R.J. Siracusa, S. K. Biswas, Y. Ruixi, P. Narasimhan, and C.A. Johnston, “WATMnet: A Prototype Wireless ATM System for Multimedia Personal Communication”, IEEE Journal on Selected Areas in Communications, Vol. 15, No. 1, pp. 83–95, 1997.CrossRefGoogle Scholar
  4. 4.
    L. Musumeci, P. Giacomazzi, and L. Fratta, “Polling-and Contention-Based Schemes for TDMA-TDD Access to Wireless ATM Networks”, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 9, pp. 1597–1607, 2000.CrossRefGoogle Scholar
  5. 5.
    G. Colombo, L. Lenzini, E. Mingozzi, B. Cornaglia, and R. Santaniello, “Extended Performance Evaluation of PRADOS: A Scheduling Algorithm for Traffic Integration in a Wireless ATM Network”, Wireless Networks, Vol. 8, No. 2–3, pp. 265–274, 2002.MATHCrossRefGoogle Scholar
  6. 6.
    D. A. Dyson and Z. J. Haas, “A Dynamic Packet Reservation Multiple Access Scheme for Wireless ATM”, Mobile Networks and Applications (MONET) Journal, Vol. 4, No. 2, pp. 87–99, 1999.CrossRefGoogle Scholar
  7. 7.
    X. Wang and Y. Chen, “A TDMA/FDD MAC Protocol Based on a New Resource Updating Scheme”, in Proceedings of the IEEE GLOBECOM 2001, San Antonio, USA.Google Scholar
  8. 8.
    G. Bianchi, F. Borgonovo, L. Fratta, L. Musumeci, and M. Zorzi, “C-PRMA: A Centralized Packet Reservation Multiple Access for Local Wireless Communications”, IEEE Transactions on Vehicular Technology, Vol. 46, No. 2, pp. 422–436, 1997.CrossRefGoogle Scholar
  9. 9.
    P. Koutsakis and M. Paterakis, “On Multiple Traffic Type Integration over Wireless TDMA Channels with Adjustable Request Bandwidth”, International Journal of Wireless Information Networks, Vol. 7, No. 2, pp. 55–68, 2000.CrossRefGoogle Scholar
  10. 10.
    N.M. Mitrou, G.L. Lyberopoulos, and A.D. Panagopoulou, “Voice and Data Integration in the Air-Interface of a Microcellular Mobile Communication System ”, IEEE Transactions on Vehicular Technology, Vol. 42, No. 1, pp. 1–13, 1993.CrossRefGoogle Scholar
  11. 11.
    S. Nanda, D.J. Goodman, and U. Timor, “Performance of PRMA: A Packet Voice Protocol for Cellular Systems”, IEEE Transactions on Vehicular Technology, Vol. 40, pp. 584–598, 1991.CrossRefGoogle Scholar
  12. 12.
    ETSI. Digital Cellular Telecommunications System (Phase 2+); Technical Realization of the Short Message Service (SMS); Point-to-Point (PP). (GSM 03.40)Google Scholar
  13. 13.
  14. 14.
    P. Tran-Gia, D. Staehle, and K. Leibnitz, “Source Traffic Modeling of Wireless Applications”, International Journal of Electronics and Communications, Vol. 55, No. 1, pp. 27–37, 2001.CrossRefGoogle Scholar
  15. 15.
    H.-K. Choi and J.O. Limb, “A Behavioral Model of Web Traffic”, in Proceedings of the Seventh International Conference on Networking Protocols (ICNP), Toronto, Canada, pp. 327–334, 1999.Google Scholar
  16. 16.
    F.H.P. Fitzek and M. Reisslein, “MPEG-4 and H.263 Video Traces for Network Performance Evaluation”, IEEE Network, Vol. 15, No. 6, pp. 40–54, 2001.CrossRefGoogle Scholar
  17. 17.
    A.C. Cleary and M. Paterakis, “An Investigation of Reservation Random Access Algorithms for Voice-Data Integration in Microcellular Wireless Environments”, International Journal of Wireless Information Networks, Vol. 2, No. 1, pp. 1–16, Jan. 1995.CrossRefGoogle Scholar
  18. 18.
    D. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice Hall Inc., 1992.Google Scholar
  19. 19.
    W.C. Wong and D.J. Goodman, “A Packet Reservation Multiple Access Protocol for Integrated Speech and Data Transmission”, IEE Proceedings-1, Vol. 139, pp. 607–612, Dec. 1992.Google Scholar
  20. 20.
    E.N. Gilbert, “Capacity of A Burst-Noise Channel”, Bell Systems Technical Journal, Vol.39, pp. 1253–1265, 1960.Google Scholar
  21. 21.
    E.O. Elliot, “Estimates of Error Rates for Codes on Burst-Noise Channels”, Bell Systems Technical Journal, Vol.42, pp. 1977–1997, 1963.Google Scholar
  22. 22.
    A. Willig, “A New Class of Packet -And Bit- Level Models for Wireless Channels”, in Proceedings of the 13th IEEE International Symposium on Personal Indoor and Mobile Radio Communication (PIMRC) 2002, Lisbon, Portugal.Google Scholar
  23. 23.
    H.S. Wang and N. Moayeri, “Finite State Markov Channel-A Useful Model for Radio Communications Channels”, IEEE Transactions on Vehicular Technology, Vol. 44, No. 1, pp. 163–171, 1995.CrossRefGoogle Scholar
  24. 24.
    M. Hassan, M.M. Krunz, and I. Matta, “Markov-Based Channel Characterization for Tractable Performance Analysis in Wireless Packet Networks”, IEEE Transactions on Wireless Communications, Vol. 3, No. 3, pp. 821–831, 2004.CrossRefGoogle Scholar
  25. 25.
    M. Bottigliengo, C. Casetti, C.-F. Chiasserini, and M. Meo, “Short-Term Fairness for TCP Flows in 802.11 b WLANs”, in Proceedings of the IEEE Infocom, Hong Kong, China, 2004.Google Scholar
  26. 26.
    L.-J. Chen, T. Sun, M.Y. Sanadidi, and M. Gerla, “Improving Wireless Link Throughput via Interleaved FEC”, in Proc. of the 9th IEEE Symposium on Computers and Communications (ISCC), Alexandria, Egypt, 2004.Google Scholar
  27. 27.
    W. Kumwilaisak, J. Kim, and C.-C.J. Kuo, “Video Transmission Over Wireless Fading Channels with Adaptive FEC”, in Proc. of the International Picture Coding Symposium (PCS), Seoul, Korea, 2001.Google Scholar
  28. 28.
    A. Nafaa, T. Ahmed, and A. Mehaoua, “Unequal and Interleaved FEC Protocol for Robust MPEG-4 Multicasting over Wireless LANs”, in Proceedings of the IEEE ICC, Paris, France 2004.Google Scholar
  29. 29.
    V. Srinivasan, A. Ghanwani, and E. Gelenbe, “Block Cell Loss Reduction in ATM Networks”, Computer Communications, Vol. 19, No. 13, pp. 1077–1091.Google Scholar
  30. 30.
    E. W. Biersack, “Performance Evaluation of Forward Error Correction in an ATM environment”, IEEE Journal on Selected Areas in Communications, Vol. 11, No. 4, pp. 631–640, 1993.CrossRefGoogle Scholar
  31. 31.
    G. Armitage and K. Adams, “Packet Reassembly During Cell Loss”, IEEE Network Magazine, Vol. 7, No. 5, pp. 26–34, 1993.CrossRefGoogle Scholar
  32. 32.
    A. Romanow and S. Floyd, “Dynamics of TCP traffic over ATM Networks”, in Proc. of the ACM SIGCOMM, London, UK, 1994.Google Scholar
  33. 33.
    D.P. Olshefski, J. Nieh and D. Agrawal, “Inferring Client Response Time at the Web Server”, in Proc. of the ACM SIGMETRICS Conference 2002, Marina Del Rey, California, USA.Google Scholar
  34. 34.
  35. 35.
    A. Matrawy, I. Lambadaris, and C. Huang, “MPEG4 Traffic Modeling Using the Transform Expand Sample Methodology”, in Proc. of the 4th IEEE International Workshop on Networked Appliances, Gaithersbourg, USA, 2002.Google Scholar
  36. 36.
    S. Lin and D.J. Costello, Error Control Coding: Fundamentals and Applications, Prentice-Hall, 1983.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Dept. of ElectronicsTechnological Educational Institute of CreteChaniaGreece

Personalised recommendations