Skip to main content
Log in

A joint and dynamic routing approach to connected vehicles via LEO constellation satellite networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The rapid development of the Internet of vehicles and the sudden urban traffic conditions bring increasing load pressure on the ground communication network. To solve this problem, in this paper we propose a joint and dynamic routing approach for connected vehicles in Low Earth Orbit (LEO) constellation satellite networks. Firstly, to realize global path planning service, the global situational awareness is conducted by jointing the satellite to transferee the acquired data to the control center which makes the initial route then. We employ the shortest-path algorithm and the ant colony optimization to jointly obtains the optimal end-to-end multi-hop path of the transmission. The joint and dynamic routing scheme in LEO network makes up for the shortcoming of ground communications. Simulation results show that the proposed routing method for connected vehicle networks in this paper is feasible and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang, D., Wang, Y., Lv, Z., Wang, W., & Wang, H. (2020). An energy-efficient networking approach in cloud services for IIoT networks. IEEE Journal on Selected Areas in Communications, 38(5), 928–941.

    Article  Google Scholar 

  2. Wu, J., Ota, K., Dong, M., & Li, C. (2016). A hierarchical security framework for defending against sophisticated attacks on wireless sensor networks in smart cities. IEEE Access, 4, 416–424.

    Article  Google Scholar 

  3. Klaina, H., Guembe, I. P., Lopez-Iturri, P., Astrain, J. J., Azpilicueta, L., Aghzout, O., Alejos, A. V., & Falcone, F. (2020). Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities. IEEE Access, 8, 124688–124701.

    Article  Google Scholar 

  4. Ang, L., Seng, K. P., Ijemaru, G. K., & Zungeru, A. M. (2019). Deployment of IoV for smart cities: Applications, architecture, and challenges. IEEE Access, 7, 6473–6492.

    Article  Google Scholar 

  5. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19(10), 3305–3319.

    Article  Google Scholar 

  6. Hossain. M, R. Hasan, R., & Zawoad, S. (2017). Trust-IoV: A trustworthy forensic investigation framework for the Internet of Vehicles (IoV). IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, pp. 25–32.

  7. Cheng, J., Yuan, G., Zhou, M., Gao, S., Liu, C., Duan, H., & Zeng, Q. (2020). Accessibility analysis and modeling for IoV in an urban scene. IEEE Transactions on Vehicular Technology, 69(4), 4246–4256.

    Article  Google Scholar 

  8. Jiang, D., Wang, W., Shi, L., & Song, H. (2020). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 7(1), 507–519.

    Article  MathSciNet  Google Scholar 

  9. Hou, X., Ren, Z., Wang, J., Cheng, W., Ren, Y., Chen, K. C., & Zhang, H. (2020). Reliable computation offloading for edge-computing-enabled software-defined IoV. IEEE Internet of Things Journal, 7(8), 7097–7111.

    Article  Google Scholar 

  10. Hossain, M., Hasan, R., & S. Zawoad, S. (2017). Trust-IoV: A trustworthy forensic investigation framework for the Internet of Vehicles (IoV). In: 2017 IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, pp. 25–32.

  11. Kumar, P., Verma, A., & Singhal, P., (2019). VANET protocols with challenges- A review. In: 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, pp. 598–602.

  12. Wazid, M., Bagga, P., Das, A. K., Shetty, S., Rodrigues, J. J., & Park, Y. (2019). AKM-IoV: Authenticated key management protocol in fog computing-based internet of vehicles deployment. IEEE Internet of Things Journal, 6(5), 8804–8817.

    Article  Google Scholar 

  13. Wazid, M., Bagga, P., Das, A. K., Shetty, S., Rodrigues, J. J., & Park, Y. (2019). AKM-IoV: Authenticated key management protocol in fog computing-based internet of vehicles deployment. IEEE Internet of Things Journal, 6(5), 8804–8817.

    Article  Google Scholar 

  14. Cheng, J., Yuan, G., Zhou, M., Gao, S., Liu, C., Duan, H., & Zeng, Q. (2020). Accessibility analysis and modeling for IoV in an urban scene. IEEE Transactions on Vehicular Technology, 69(4), 4246–4256.

    Article  Google Scholar 

  15. Benomarat, I., Madini, Z., Zouine, Y., & A. Chaoub, A., (2018). Enhancing Internet of vehicles (IOVs) performances using intelligent cognitive radio principles. In: 2018 International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, 2018, pp. 1–4.

  16. Taljegard, M. (2019). Impact of vehicle-to-grid on the European electricity system - the electric vehicle battery as a storage option." 2019 IEEE Transportation Electrification Conference and Expo (ITEC) IEEE.

  17. Zhou, Z., Sun, C., Shi, R., Chang, Z., Zhou, S., & Li, Y. (2017). Robust energy scheduling in vehicle-to-grid networks. IEEE Network, 31(2), 30–37.

    Article  Google Scholar 

  18. Xizhi, H., J. Zhihui, J., Congcong, X. (2020). Vehicle path planning fusion algorithm based on road network.In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 2020, pp. 98–102.

  19. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular Ad Hoc network. Journal of network and computer applications, 37, 380–392.

    Article  Google Scholar 

  20. Zhang, J. D., Feng, Y. J., Shi, F. F., Wang, G., Ma, B., Li, R. S., & Jia, X. Y. (2016). Vehicle routing in urban areas based on the oil consumption weight-Dijkstra algorithm. IET Intelligent Transport Systems, 10(7), 495–502.

    Article  Google Scholar 

  21. Jiang, D., Wang, Z., Huo, L., & Xie, S. (2020). A performance measurement and analysis method for software-defined networking of IoV. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.3029076

    Article  Google Scholar 

  22. Yang, J. Y., Chou, L. D., Tseng, L. M., & Chen, Y. M. (2017). Autonomic navigation system based on predicted traffic and VANETs. Wireless Personal Communications, 92(2), 515–546.

    Article  Google Scholar 

  23. Fu, T., Liu, P., Ding, Y., & Zhang, Y. (2018). Secure and efficient large content broadcasting in mobile social networks. IEEE Access, 6, 42108–42118.

    Article  Google Scholar 

  24. Li, Y., Deng, N., & Zhou, W. (2020). A hierarchical approach to resource allocation in extensible multi-layer LEO-MSS. IEEE Access, 8, 18522–18537.

    Article  Google Scholar 

  25. Jin, C., He, X., & Ding, X. (2019). Traffic analysis of LEO satellite Internet of Things[C]. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 2019, pp 67–71.

  26. Qu, H., Xu, X., Zhao, J., & Yue, P. (2020). An SDN-based space-air-ground integrated network architecture and controller deployment strategy. In: 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 2020, pp. 138–142.

  27. Wang, R., & Liu, R. (2020). A novel puncturing scheme for polar codes." IEEE Communications Letters 18.12(2014):2081-2084. Rodrigues, L., Varum, T., & Matos, J.N. (2020). Reconfigurable Filtenna for 5G/LEO Constellations Mobile Terminals," 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020, pp. 1–4.

  28. Jiang, D., Huo, L., & Song, H. (2020). Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Transactions on Network Science and Engineering, 7(1), 80–90.

    Article  MathSciNet  Google Scholar 

  29. Leyva-Mayorga, I., Soret, B., Röper, M., Wübben, D., Matthiesen, B., Dekorsy, A., & Popovski, P. (2020). LEO small-satellite constellations for 5G and beyond-5G communications. IEEE Access, 8, 184955–184964.

    Article  Google Scholar 

  30. Wang, Z., Jiang, D., Wang, F., Lv, Z., & Nowak, R. (2021). A polymorphic heterogeneous security architecture for edge-enabled smart grids. Sustainable Cities and Society, 67, 102661.

    Article  Google Scholar 

  31. Lu, N., Cheng, N., Zhang, N., Shen, X., & Mark, J. W. (2014). Connected vehicles: Solutions and challenges. IEEE Internet of Things Journal, 1(4), 289–299.

    Article  Google Scholar 

  32. Moongilan, D. (2019). 5G Internet of Things (IOT) near and far-fields and regulatory compliance intricacies. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, pp. 894–898.

  33. Jiang, D., Wang, Y., Lv, Z., Qi, S., & Singh, S. (2020). Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Transactions on Industrial Informatics, 16(2), 1310–1320.

    Article  Google Scholar 

  34. Chen, C., Xiao, T., Zhang, M., & Pei, Q. (2019). PTCCR: A path transmission costs-based multi-lane connectivity routing protocol for urban internet of vehicles. IEEE Access, 7, 141838–141849.

    Article  Google Scholar 

  35. Jiang, D., Huo, L., Zhang, P., & Lv, Z. (2020). Energy-efficient heterogeneous networking for electric vehicles networks in smart future cities. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.3029015

    Article  Google Scholar 

  36. Amer, H. M., Al-Kashoash, H. A. A, Kemp, A., Mihaylova, L., M. Mayfield, M., (2018). Coalition game for emergency vehicles re-routing in smart cities. In: 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, pp. 306–310.

  37. Jiang, D., Wang, Z., Wang, W., Lv, Z. & Choo, K.K.R., (2021). AI-assisted energy-efficient and intelligent routing for reconfigurable wireless networks. IEEE Transactions on Network Science and Engineering.

  38. De Sanctis, M., Cianca, E., Araniti, G., Bisio, I., & Prasad, R. (2015). Satellite communications supporting internet of remote things. IEEE Internet of Things Journal, 3(1), 113–123.

    Article  Google Scholar 

  39. Guidotti, A., Vanelli-Coralli, A., Conti, M., Andrenacci, S., Chatzinotas, S., Maturo, N., Evans, B., Awoseyila, A., Ugolini, A., Foggi, T., & Gaudio, L. (2019). Architectures and key technical challenges for 5G systems incorporating satellites. IEEE Transactions on Vehicular Technology, 68(3), 2624–2639.

    Article  Google Scholar 

  40. Qu, Z., Zhang, G., Cao, H., & Xie, J. (2017). LEO satellite constellation for Internet of Things. IEEE Access, 5, 18391–18401.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 61571104), the Sichuan Science and Technology Program (No. 2018JY0539), the Key projects of the Sichuan Provincial Education Department (No. 18ZA0219), the Fundamental Research Funds for the Central Universities (No. ZYGX2017KYQD170), the CERNET Innovation Project (No. NGII20190111), the Fund Projects (Nos. 2020-JCJQ-ZD-016-11, 61403110405, 315075802, JZX6Y202001010161), and the Innovation Funding (No. 2018510007000134). The authors wish to thank the reviewers for their helpful comments. The shorter conference version of this paper appeared in the conference SIMUTools2020. Dr. Dingde Jiang is corresponding author of this paper (email: merry_99@sina.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingde Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, W., Liu, B. et al. A joint and dynamic routing approach to connected vehicles via LEO constellation satellite networks. Wireless Netw (2021). https://doi.org/10.1007/s11276-021-02712-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-021-02712-0

Keywords

Navigation