Skip to main content
Log in

Throughput improvement by mode selection in hybrid duplex wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Hybrid duplex wireless networks, use half duplex (HD) as well as full duplex (FD) modes to utilize the advantages of both technologies. This paper tries to determine the proportion of the network nodes that should be in HD or FD modes in such networks, to maximize the overall throughput of all FD and HD nodes. Here, by assuming imperfect self-interference cancellation (SIC) and using ALOHA protocol, the local optimum densities of FD, HD and idle nodes are obtained in a given time slot, using Karush–Kuhn–Tucker (KKT) conditions as well as stochastic geometry tool. We also obtain the sub-optimal value of the signal-to-interference ratio (SIR) threshold constrained by fixed node densities, using the steepest descent method in order to maximize the network throughput. The results show that in such networks, the proposed hybrid duplex mode selection scheme improves the level of throughput. The results also indicate the effect of imperfect SIC on reducing the throughput. Moreover, it is demonstrated that by choosing an optimal SIR threshold for mode selection process, the achievable throughput in such networks can increase by around 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The link distance R can also be random without affecting the main results such as success probabilities and maximal throughput, since we can always derive the results by first conditioning on R and then averaging over it [24].

References

  1. Li, R., Chen, Y., Li, G. Y., & Liu, G. (2017). Full-duplex cellular networks. IEEE Communications Magazine, 55(4), 184–191. https://doi.org/10.1109/MCOM.2017.1600361CM.

    Article  Google Scholar 

  2. Naslcheraghi, M., Ghorashi, S. A., & Shikh-Bahaei, M. (2017). Full-duplex device-to-device collaboration for low-latency wireless video distribution. In 2017 24th International conference on telecommunications (ICT) (pp. 1–5). https://doi.org/10.1109/ICT.2017.7998228.

  3. Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7), 1369–1409. https://doi.org/10.1109/JPROC.2015.2497203.

    Article  Google Scholar 

  4. Naslcheraghi, M., Ghorashi, S. A., & Shikh-Bahaei, M. (2017). Fd device-to-device communication for wireless video distribution. IET Communications, 11(7), 1074–1081. https://doi.org/10.1049/iet-com.2016.0675.

    Article  Google Scholar 

  5. Sharma, S. K., Bogale, T. E., Le, L. B., Chatzinotas, S., Wang, X., & Ottersten, B. (2018). Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges. IEEE Communications Surveys Tutorials, 20(1), 674–707. https://doi.org/10.1109/COMST.2017.2773628.

    Article  Google Scholar 

  6. Ernest, T. Z. H., Madhukumar, A. S., Sirigina, R. P., & Krishna, A. K. (2019). Outage analysis and finite snr diversity-multiplexing tradeoff of hybrid-duplex systems for aeronautical communications. IEEE Transactions on Wireless Communications, 18(4), 2299–2313. https://doi.org/10.1109/TWC.2019.2902550.

    Article  Google Scholar 

  7. Wei, Z., Sun, S., Zhu, X., Huang, Y., & Wang, J. (2018). Energy-efficient hybrid duplexing strategy for bidirectional distributed antenna systems. IEEE Transactions on Vehicular Technology, 67(6), 5096–5110. https://doi.org/10.1109/TVT.2018.2814047.

    Article  Google Scholar 

  8. Ernest, T. Z. H., Madhukumar, A. S., Sirigina, R. P., & Krishna, A. K. (2019). A hybrid-duplex system with joint detection for interference-limited uav communications. IEEE Transactions on Vehicular Technology, 68(1), 335–348. https://doi.org/10.1109/TVT.2018.2878889.

    Article  Google Scholar 

  9. Naslcheraghi, M., Ghorashi, S. A., & Shikh-Bahaei, M. (2017). Performance analysis of inband fd-d2d communications with imperfect si cancellation for wireless video distribution. In 2017 8th International conference on the network of the future (NOF) (pp. 176–181). https://doi.org/10.1109/NOF.2017.8251246.

  10. Cao, Y., Zhao, N., Pan, G., Chen, Y., Fan, L., Jin, M., et al. (2019). Secrecy analysis for cooperative noma networks with multi-antenna full-duplex relay. IEEE Transactions on Communications, 67(8), 5574–5587. https://doi.org/10.1109/TCOMM.2019.2914210.

    Article  Google Scholar 

  11. Chen, B., Chen, Y., Chen, Y., Cao, Y., Ding, Z., Zhao, N., et al. (2019). Secure primary transmission assisted by a secondary full-duplex noma relay. IEEE Transactions on Vehicular Technology, 68(7), 7214–7219. https://doi.org/10.1109/TVT.2019.2919873.

    Article  Google Scholar 

  12. Wang, K., Yu, F. R., Wang, L., Li, J., Zhao, N., Guan, Q., et al. (2019). Interference alignment with adaptive power allocation in full-duplex-enabled small cell networks. IEEE Transactions on Vehicular Technology, 68(3), 3010–3015. https://doi.org/10.1109/TVT.2019.2891675.

    Article  Google Scholar 

  13. Gaber, A., Youssef, E., Rizk, M. R. M., Salman, M., & Seddik, K. G. (2020). Cooperative delay-constrained cognitive radio networks: Delay-throughput trade-off with relaying full-duplex capability. IEEE Access (pp. 1–1). https://doi.org/10.1109/ACCESS.2020.2964565.

  14. Wang, X., Huang, H., & Hwang, T. (2016). On the capacity gain from full duplex communications in a large scale wireless network. IEEE Transactions on Mobile Computing, 15(9), 2290–2303. https://doi.org/10.1109/TMC.2015.2492544.

    Article  Google Scholar 

  15. Haenggi, M. (2012). Stochastic geometry for wireless networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  16. Tang, W., Feng, S., Liu, Y., & Ding, Y. (2016). Hybrid duplex switching in heterogeneous networks. IEEE Transactions on Wireless Communications, 15(11), 7419–7431. https://doi.org/10.1109/TWC.2016.2602329.

    Article  Google Scholar 

  17. Thanh, P. D., Hoan, T. N. K., & Koo, I. (2019). Joint resource allocation and transmission mode selection using a pomdp-based hybrid half-duplex/full-duplex scheme for secrecy rate maximization in multi-channel cognitive radio networks. IEEE Sensors Journal,. https://doi.org/10.1109/JSEN.2019.2958966.

    Article  Google Scholar 

  18. Liu, J., Han, S., Liu, W., & Yang, C. (2017). The value of full-duplex for cellular networks: A hybrid duplex-based study. IEEE Transactions on Communications, 65(12), 5559–5573. https://doi.org/10.1109/TCOMM.2017.2743689.

    Article  Google Scholar 

  19. Li, S., Zhou, M., Wu, J., Song, L., Li, Y., & Li, H. (2017). On the performance of x-duplex relaying. IEEE Transactions on Wireless Communications, 16(3), 1868–1880. https://doi.org/10.1109/TWC.2017.2656887.

    Article  Google Scholar 

  20. Kwon, T., & Lee, H. (2018). Hybrid duplex wireless peer discovery with imperfect self-interference cancellation. IEEE Communications Letters, 22(3), 598–601. https://doi.org/10.1109/LCOMM.2017.2780095.

    Article  Google Scholar 

  21. Otyakmaz, A., Schoenen, R., Dreier, S., & Walke, B. H. (2008). Parallel operation of half- and full-duplex fdd in future multi-hop mobile radio networks. In 2008 14th European wireless conference (pp. 1–7). https://doi.org/10.1109/EW.2008.4623892.

  22. Yamamoto, K., Haneda, K., Murata, H., & Yoshida, S. (2011). Optimal transmission scheduling for a hybrid of full- and half-duplex relaying. IEEE Communications Letters, 15(3), 305–307. https://doi.org/10.1109/LCOMM.2011.011811.101925.

    Article  Google Scholar 

  23. Lee, J., & Quek, T. Q. S. (2015). Hybrid full-/half-duplex system analysis in heterogeneous wireless networks. IEEE Transactions on Wireless Communications, 14(5), 2883–2895. https://doi.org/10.1109/TWC.2015.2396066.

    Article  Google Scholar 

  24. Tong, Z., & Haenggi, M. (2015). Throughput analysis for full-duplex wireless networks with imperfect self-interference cancellation. IEEE Transactions on Communications, 63(11), 4490–4500. https://doi.org/10.1109/TCOMM.2015.2465903.

    Article  Google Scholar 

  25. Hemachandra, K. T., & Fapojuwo, A. O. (2017). Distance based duplex mode selection in large scale peer-to-peer wireless networks. In 2017 IEEE International conference on communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC.2017.7996444.

  26. Yao, Y., Li, B., Li, C., Yang, C., & Xia, B. (2020). Downlink performance analysis of the full-duplex networks with interference cancellation. IEEE Transactions on Communications,. https://doi.org/10.1109/TCOMM.2020.2965536.

    Article  Google Scholar 

  27. Zheng, T., Wang, H., Yuan, J., Han, Z., & Lee, M. H. (2017). Physical layer security in wireless ad hoc networks under a hybrid full-/half-duplex receiver deployment strategy. IEEE Transactions on Wireless Communications, 16(6), 3827–3839. https://doi.org/10.1109/TWC.2017.2689005.

    Article  Google Scholar 

  28. Li, Y., Wang, T., Zhao, Z., Peng, M., & Wang, W. (2015). Relay mode selection and power allocation for hybrid one-way/two-way half-duplex/full-duplex relaying. IEEE Communications Letters, 19(7), 1217–1220. https://doi.org/10.1109/LCOMM.2015.2433260.

    Article  Google Scholar 

  29. Fang, Z., Ni, W., Liang, F., Shao, P., & Wu, Y. (2017). Massive mimo for full-duplex cellular two-way relay network: A spectral efficiency study. IEEE Access, 5, 23288–23298. https://doi.org/10.1109/ACCESS.2017.2766079.

    Article  Google Scholar 

  30. Gazestani, A. H., Ghorashi, S. A., Mousavinasab, B., & Shikh-Bahaei, M. (2019). A survey on implementation and applications of full duplex wireless communications. Physical Communication, 34, 121–134. https://doi.org/10.1016/j.phycom.2019.03.006.

    Article  Google Scholar 

  31. Towhidlou, V., & Shikh-Bahaei, M. (2019). Full-duplex d2d communications in vehicular networks. In 2019 IEEE Wireless communications and networking conference (WCNC) (pp. 1–6). https://doi.org/10.1109/WCNC.2019.8885733.

  32. Ernest, T. Z. H., Madhukumar, A. S., Sirigina, R. P., & Krishna, A. K. (2018). Hybrid-duplex systems for uav communications under rician shadowed fading. In 2018 IEEE 88th vehicular technology conference (VTC-Fall) (pp. 1–5). https://doi.org/10.1109/VTCFall.2018.8690623.

  33. Cheng, W., Zhang, W., Liang, L., & Zhang, H. (2019). Full-duplex for multi-channel cognitive radio ad hoc networks. IEEE Network, 33(2), 118–124. https://doi.org/10.1109/MNET.2018.1700401.

    Article  Google Scholar 

  34. Bakr, M. (2013). Nonlinear optimization in electrical engineering with applications in MATLAB®, London. The Institution of Engineering and Technology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Ghorashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In [34] the standard form of an optimization problem with equality and inequality constraints is defined as follows:

$$\begin{aligned} \begin{aligned} \min&\quad f(x)&\\ s.t&\quad {g_j}(x) \leqslant 0 \quad&j = 1,2,\ldots ,m \\&\quad {h_k} = 0\quad \quad&j = 1,2,\ldots ,m \end{aligned} \end{aligned}$$

where f is the objective function, and g and h are the constraints of the problem. In this case, the KKT conditions can be written as follows:

$$\begin{aligned} \begin{array}{*{20}{l}} {\frac{{\partial f}}{{\partial {x_i}}} + \mathop {\sum }\limits _{j = 1}^m {\eta _j}\frac{{\partial {g_j}}}{{\partial {x_i}}} + \mathop {\sum }\limits _{j = 1}^p {\mu _k}\frac{{\partial {h_k}}}{{\partial {x_i}}} = 0,}&{}{i = 1,2, \ldots ,n} \\ {{\eta _j}{g_j} = 0,}&{}{j = 1,2, \ldots ,m} \\ {{g_j} \leqslant 0,\;}&{}{j = 1,2, \ldots ,m} \\ {{\eta _j} \geqslant 0,}&{}{j = 1,2, \ldots ,m} \\ {{h_k}\left( x \right) = 0,}&{}{k = 1,2, \ldots ,p} \end{array} \end{aligned}$$

where \({\mu _k}\) and \({\eta _k}\) are the Lagrange coefficients. The optimization problem in (10), which has an equality constraint and three inequality constraints, can be described in the following standard form:

$$\begin{aligned} \begin{array}{l} \begin{array}{*{20}{c}} {\min }&{}{f = - T} \end{array}\\ \begin{array}{*{20}{c}} {s.t.}&{}{{\lambda _1} + {\lambda _2} + {\lambda _3} = \lambda } \end{array}\\ \quad \quad - {\lambda _1} \le 0\\ \quad \quad - {\lambda _2} \le 0\\ \quad \quad - {\lambda _3} \le 0 \end{array} \end{aligned}$$

Applying the KKT conditions, leads to the following formulations:

$$\begin{aligned} \begin{aligned}&\left[ { \begin{array}{*{20}{c}} { - \log (1 + \theta )\exp ( - {\lambda _1}H - {\lambda _2}F)(1 - {\lambda _1}H - 2KH{\lambda _2})} \\ { - \log (1 + \theta )\exp ( - {\lambda _1}H - {\lambda _2}F)( - {\lambda _1}F + 2K - 2KF{\lambda _2})} \\ 0 \end{array}} \right] \\&\quad + \left[ { \begin{array}{*{20}{c}} { - 1}&{}0&{}0 \\ 0&{}{ - 1}&{}0 \\ 0&{}0&{}{ - 1} \end{array}} \right] \left[ { \begin{array}{*{20}{c}} {{\eta _1}} \\ {{\eta _2}} \\ {{\eta _3}} \end{array}} \right] + \mu \left[ { \begin{array}{*{20}{c}} 1 \\ 1 \\ 1 \end{array}} \right] = 0 \\ \end{aligned} \end{aligned}$$

where \(\mu\) and \({\eta _i}\) with \(i \in \{ 1,2,3\}\) are Lagrange coefficients and K, H and F are obtained from the existing equations in section III. Therefore, we have:

$$\begin{aligned} \begin{aligned}&A: - \log (1 + \theta )\exp ( - {\lambda _1}H - {\lambda _2}F)(1 - {\lambda _1}H - 2KH{\lambda _2}) \quad - {\eta _1} + \mu = 0 \\&B: - \log (1 + \theta )\exp ( - {\lambda _1}H - {\lambda _2}F)( - {\lambda _1}F + 2K - 2KF{\lambda _2}) \quad - {\eta _2} + \mu = 0 \\&C:0 - {\eta _3} + \mu = 0 \rightarrow {\eta _3} = \mu \\&D:{\eta _1}{\lambda _1} = 0 \\&E:{\eta _2}{\lambda _2} = 0 \\&F:{\eta _3}{\lambda _3} = 0 \\&G:{\lambda _i} \geqslant 0,i = \{ 1,2,3\} \\&H:\sum \limits _{i = 1}^3 {{\lambda _i} = \lambda } \\&I:{\eta _i} \geqslant 0,i = \{ 1,2,3\} \end{aligned} \end{aligned}$$

Given the equation G, each \({\lambda _i}\), \(i \in \{ 1,2,3\}\) has two states: one is equal to zero and one to be positive. Therefore, there are eight modes to set them up (the whole-zero state is eliminated with respect to the relation H, and we have seven states):

Case 1: \(\lambda _1=0, \lambda _2=0, \lambda _3>0 \Rightarrow \eta _3=\mu =0\)

from A: \(\eta _1= - \log (1 + \theta ) \geqslant 0 \rightarrow \times\)

from B: \(\eta _2= - 2K\log (1 + \theta ) \geqslant 0 \rightarrow \times\)

Case 2: \(\lambda _1= \lambda , \lambda _2=0, \lambda _3=0 \Rightarrow \eta _1=0\)

from A: \(\eta _3 = \mu = \log (1 + \theta )\exp ( - \lambda H)(1 - \lambda H) \geqslant 0\)\(\rightarrow \lambda H < 1\)

from B: \(\eta _2 = \mu - \log (1 + \theta )\exp ( - \lambda H)( - \lambda F + 2K) \geqslant 0\)\(\rightarrow 1 - \lambda H + \lambda F - 2K \geqslant 0\)

Case 3: \(\lambda _1 = 0,\lambda _2 = \lambda ,\lambda _3 = 0 \Rightarrow {\eta _2} = 0\)

from B: \(\eta _3 = \mu = \log (1 + \theta )exp( - \lambda F)(2K - 2K\lambda F) \geqslant 0\)\(\rightarrow \lambda F \leqslant 1\)

from A: \(\eta _1 = \log (1 + \theta )exp( - \lambda F)(2K - 2K\lambda (F - H) - 1) \geqslant 0\)

\(\rightarrow 2K - 2K\lambda (F - H) \geqslant 1\)

Case 4: \(\lambda _1 = 0,{\lambda _2}> 0,{\lambda _3} > 0 \Rightarrow {\eta _2} = 0,{\eta _3} = \mu = 0\)

from B: \(2K - 2KF\lambda _2 = 0 \rightarrow \lambda _2 = \frac{1}{F} > 0\)

from H:\(\lambda _3 = \lambda - \frac{1}{F} > 0 \rightarrow \frac{1}{F} < \lambda\)

from A:\(\eta _1 = 0 - \log (1 + \theta )exp( - 1)(1 - 2K\frac{H}{F}) \geqslant 0\)\(\rightarrow F \leqslant 2KH\)

Case 5: \(\lambda _1> 0,{\lambda _2} = 0,{\lambda _3} > 0 \Rightarrow {\eta _1} = 0,{\eta _3} = \mu = 0\)

from A: \({1 -\lambda _1}H = 0 \rightarrow {\lambda _1} = \frac{1}{H} > 0\)

from H: \({\lambda _3} = \lambda - \frac{1}{H} > 0 \rightarrow \frac{1}{H} < \lambda\)

from B: \({\eta _2} = 0 - \log (1 + \theta )exp( - 1)( - \frac{F}{H} + 2K) \geqslant 0\)\(\rightarrow F \geqslant 2KH\)

Case 6: \({\lambda _1}> 0,{\lambda _2} > 0,{\lambda _3} = 0 \Rightarrow {\eta _1} = 0,{\eta _2} = 0\)

from A,B,H: \(\left\{ { \begin{array}{*{20}{l}} {{\lambda _1} = \lambda - \frac{{2K - \lambda F + \lambda H - 1}}{{H - F - 2KH + 2KF}}> 0} \\ {{\lambda _2} = \frac{{2K - \lambda F + \lambda H - 1}}{{H - F - 2KH + 2KF}} > 0} \end{array}} \right.\)

from A:\({\eta _3} = \mu \geqslant 0 \rightarrow {\lambda _1}H + 2KH{\lambda _2} \leqslant 1\)

Case 7: \({\lambda _1}> 0,{\lambda _2}> 0,{\lambda _3} > 0 \Rightarrow {\eta _1} = 0,{\eta _2} = 0,{\eta _3} = \mu = 0\)

from A,B: \(\left\{ \begin{array}{*{20}{l}} {1 - {\lambda _1}H - 2KH{\lambda _2} = 0} \\ { - {\lambda _1}F + 2K - 2KF{\lambda _2} = 0} \end{array}\right.\)

\(\rightarrow F = 2KH{\text { for }}\forall \mathop {{\lambda _i}}\limits _{i = 1,2,3} > 0 \, \& \, {\lambda _1} + {\lambda _2} + {\lambda _3} = \lambda\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavinasab, B., Hajihoseini Gazestani, A., Ghorashi, S.A. et al. Throughput improvement by mode selection in hybrid duplex wireless networks. Wireless Netw 26, 3687–3699 (2020). https://doi.org/10.1007/s11276-020-02286-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02286-3

Keywords

Navigation