Advertisement

Design and development of planar antenna array for mimo application

  • T. PrabhuEmail author
  • S. Chenthur Pandian
Article

Abstract

Multi-Input Multi-Output (MIMO) is the need for recent communication system for the enhancement of channel capacity. While the number of antenna array elements increased, the spacing between the array elements and size of the antenna reduced. Hence high coupling between the elements occur, and thus the channel capacity reduced. There were several existing methods employs, however there were some limitations like reduced gain, dielectric constant, and bandwidth. So as to overcome this and to increase the performance characteristics such as bandwidth, gain of MIMO antennas and to lessen the dielectric constant of substrate material this proposed scheme is introduced. Using these considerations and requirements, an array of two-element MIMO system will be designed and developed with a less dielectric material (\( \varvec{\varepsilon}_{{\varvec{r }}} < 4 \)). So in this Taconic RF-35 (dielectric constant is 3.5), Two T-Shaped antennas are employed for 2.45 GHz (ISM band) with multiple modes of operation to achieve the improved bandwidth of about − 10 db. Simulation is done by HFSS 13.0.

Keywords

Multi-Input Multi-Output Two T-shaped antennas Taconic RF-35 ISM band Dielectric constant 

Notes

References

  1. 1.
    Hannula, J. M., Saarinen, T. O., Lehtovuori, A., Holopainen, J., & Viikari, V. (2019). Tunable eight-element MIMO antenna based on the antenna cluster concept. IET Microwaves, Antennas and Propagation,13, 959–965.CrossRefGoogle Scholar
  2. 2.
    Aggarwal, A., & Kaur, A. G. (2016). Design and development of stacked microstrip antenna array for mimo applications.Google Scholar
  3. 3.
    Kaur, D., & Kumar, N. (2018). Capacity enhancement of multiuser wireless communication system through adaptive non-linear pre coding. International Journal of Communication Networks and Information Security,10, 67–78.Google Scholar
  4. 4.
    Elfergani, I., Hussaini, A. S., Rodriguez, J., & Abd-Alhameed, R. (2018). Antenna fundamentals for legacy mobile applications and beyond. Springer.Google Scholar
  5. 5.
    Sivasankari, J., & Sridevi, B. (2017). Enhancing energy efficiency using massive MIMO technique applicable for next generation networks. International Journal of Engineering Trends and Technology (IJETT).Google Scholar
  6. 6.
    Kim, H.-J., Park, J., Oh, K.-S., Choi, J. P., Jang, J. E., & Choi, J.-W. (2016). Near-field magnetic induction MIMO communication using heterogeneous multipole loop antenna array for higher data rate transmission. IEEE Transactions on Antennas and Propagation,64, 1952–1962.CrossRefGoogle Scholar
  7. 7.
    Ali Sarkar, G., Ballav, S., Chatterjee, A., Ranjit, S., & Parui, S. K. (2019). Four element MIMO DRA with high isolation for WLAN applications. Progress in Electromagnetics Research,84, 99–106.CrossRefGoogle Scholar
  8. 8.
    Mahto, S. K., & Choubey, A. (2016). A novel hybrid IWO/WDO algorithm for nulling pattern synthesis of uniformly spaced linear and non-uniform circular array antenna. AEU-International Journal of Electronics and Communications,70, 750–756.CrossRefGoogle Scholar
  9. 9.
    Xia, Y.-Q., Chen, X.-R., & Tang, T. (2015). A novel eight ports dual band antenna array for 2.4/3.5 GHz MIMO applications. Optik,126, 1175–1180.CrossRefGoogle Scholar
  10. 10.
    See, C. H., Saleh, A., Alabdullah, A. A., Hameed, K., Abd-Alhameed, R. A., & Jones, S., et al. (2018). Compact wideband printed MIMO/diversity monopole antenna for GSM/UMTS and LTE applications. In: Antenna fundamentals for legacy mobile applications and beyond (pp. 191–209). Springer.Google Scholar
  11. 11.
    Chamok, N. H., Yılmaz, M. H., Arslan, H., & Ali, M. (2016). High-gain pattern reconfigurable MIMO antenna array for wireless handheld terminals. IEEE Transactions on Antennas and Propagation,64, 4306–4315.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Biswas, A., & Gupta, V. R. (2019). Design and development of low profile MIMO antenna for 5G new radio smartphone applications. Wireless Personal Communications, pp. 1–12.Google Scholar
  13. 13.
    Soltani, S., & Murch, R. D. (2015). A compact planar printed MIMO antenna design. IEEE Transactions on Antennas and Propagation,63, 1140–1149.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sudhashree, S., & Chitra, S. (2019). Design and development of improved fractal mimo antenna. Telecommunications and Radio Engineering, 78.Google Scholar
  15. 15.
    Malviya, L., Panigrahi, R. K., & Kartikeyan, M. (2018). Four element planar MIMO antenna design for long-term evolution operation. IETE Journal of Research,64, 367–373.CrossRefGoogle Scholar
  16. 16.
    Hussain, R., Alreshaid, A. T., Podilchak, S. K., & Sharawi, M. S. (2017). Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets. IET Microwaves, Antennas and Propagation,11, 271–279.CrossRefGoogle Scholar
  17. 17.
    Singh, H. S., & Meshram, M. K. (2017). Design of compact dual-element antenna array for LTE700 and WWAN applications. In: 2017 International applied computational electromagnetics society symposium-Italy (ACES), pp. 1–2.Google Scholar
  18. 18.
    Radhi, A. H., Nilavalan, R., Wang, Y., Al-Raweshidy, H., Eltokhy, A. A. & Ab Aziz, N. (2018). Mutual coupling reduction with a wideband planar decoupling structure for UWB–MIMO antennas.Google Scholar
  19. 19.
    Kwon, O.-Y., Song, R., & Kim, B.-S. (2018). A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and WAVE applications. IEEE Antennas and Wireless Propagation Letters,17, 600–603.CrossRefGoogle Scholar
  20. 20.
    Wang, H., Liu, L., Zhang, Z., Li, Y., & Feng, Z. (2015). A wideband compact WLAN/WiMAX MIMO antenna based on dipole with V-shaped ground branch. IEEE Transactions on Antennas and Propagation,63, 2290–2295.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSNS College of TechnologyCoimbatoreIndia
  2. 2.Department of Electrical and Electronics EngineeringSNS College of TechnologyCoimbatoreIndia

Personalised recommendations