Skip to main content
Log in

Analytical approach towards available bandwidth estimation in wireless ad hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Since 1999 IEEE 802.11 has become a dominating wireless technology for providing WLAN in both public and private places. The protocol has evolved with time and the current version of protocol allows the maximum data rate up to 6.76 Gbps. Providing high data rate makes it capable of supporting applications demanding high bandwidth and less delay. The protocol is built on carrier sense multiple access with collision avoidance (CSMA/CA) principle to minimize the collisions. In real-time networks as the traffic increases, collisions take place between different flows leading to delay and wastage of bandwidth. In literature, various works are dedicated to predicting the collision probability to estimate available bandwidth of the network. One of the popular approaches “ABE” (Sarr et al. in IEEE Trans Mob Comput 7(10):1228–1241, 2008) focused on this issue and calculates collision probability of “Hello Packets” and interpolating it to get the collision probability of data packets to estimate the available bandwidth. The current work proposes to use an analytical approach to predict the collision probability without any intrusiveness and estimate the available bandwidth for accurate admission control. Most of the literature that uses mathematical approach assumed homogeneous conditions. The current paper takes into consideration heterogeneous conditions to resemble real networks. The paper proposes amalgamation of passive approach and analytical approach, yielding more accurate results. The work is verified through extensive simulations to validate our proposed model. Since the model is based on analytical approach, major benefits are: (a) there is no need to send packets for estimating the collisions, hence scaling down the overheads; (b) One can change the parameters and predict the result set for any given conditions; (c) the method is cost-effective and non-intrusive in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Sarr, C., Chaudet, G., & Lassous, I. G. (2008). Bandwidth estimation for IEEE 802.11-based ad hoc networks. IEEE Transactions on Mobile Computing,7(10), 1228–1241.

    Article  MATH  Google Scholar 

  2. Chaudet, C., & Lassous, I. G. (2002). BRuIT: Bandwidth reservation under interference influence. In Proceedings of the European wireless (EW’02), Florence, Italy (pp. 466–472). IEEE Press.

  3. Yang, Y., & Kravates, R. (2005). Contention-aware admission control for ad hoc networks. IEEE Transactions on Mobile Computing,4(4), 363–377.

    Article  Google Scholar 

  4. de Renesse, R., Ghassemian, M., Friderikos, V., Aghvami, A. H., et al. (2007). Cross-layer cooperation for accurate admission control decision in mobile ad hoc networks. IET Communications,1(4), 577–586.

    Article  Google Scholar 

  5. Turrubiartes, M., Torres, D., Angulo, M., & Munoz, D. (2005). Analysis of IP network path capacity estimation using a variable packet size method. In 15th international conference on electronics, communications and computers (pp. 177–182).

  6. Xiao, Y., Chen, S., Li, X., & Li., Y. (2007). A new available measurement method based on self-loading periodic streams. In International conference on wireless communications, networking and mobile computing, WiCom 2007, Shanghai, China (pp. 1904–1907).

  7. Prasad, R. S., Murry, M., Dovrolis, C., Claffy, K. C., et al. (2003). Bandwidth estimation: Metrics, measurement techniques, and tools. IEEE Networks,17(6), 27–35.

    Article  Google Scholar 

  8. Li, F., Li, M., Lu, R., Wu, H., Claypool, M., & Kinicki, R. (2006). Tools and techniques for measurement of IEEE 802.11 wireless networks. In 4th international symposium on modeling and optimization in mobile, ad hoc and wireless networks, Boston, MA, USA, (pp. 1–8).

  9. Combs, G., et al. The wireshark network protocol analyzer. http://www.wireshark.org.

  10. PRTG Network Monitor. https://www.paessler.com/prtg.

  11. Solarwinds real-time bandwidth monitor. https://www.solarwinds.com/free-tools/real-time-bandwidth-monitor.

  12. Solarwinds NetFlow Traffic Analyzer. https://www.solarwinds.com/netflow-traffic-analyzer.

  13. BandwidthD. https://sourceforge.net/projects/bandwidthd.

  14. Chaudhari, S. S., & Biradar, R. C. (2015). Survey of bandwidth estimation techniques in communication networks. Wireless Personal Communications,83(2), 1425–1476.

    Article  Google Scholar 

  15. Dovrolis, C., Ramanathan, P., & Moore, D. (2001). What do packet dispersion techniques measure? In IEEE conference on computer communications (INFOCOM), Anchorage, Alaska, USA (pp. 905–914).

  16. Lao, Li, Constantine, D., & Sanadidi, M. Y. (2006). The probe gap model can underestimate the available bandwidth of multihop paths. ACM SIGCOMM Computer Communication Review,36(5), 29–34.

    Article  Google Scholar 

  17. Renesse, R. de., Ghassemian, M., Friderikos, V., & Aghvami, A. H. (2004). QoS enabled routing in mobile ad hoc networks. In 5th IEE international conference on 3G mobile communication technologies (IEE 3G) (pp. 678–682).

  18. Zhao, H., Palacious, E. G., Wei, J., Yong, Xi, et al. (2009). Accurate available bandwidth estimation in IEEE 802.11-based ad hoc networks. Computer Communications,32(6), 1050–1057.

    Article  Google Scholar 

  19. Chaudhari, S. S, & Biradar, R. C. (2014). Collision probability based available bandwidth estimation in mobile ad hoc networks. In Proceedings of the fifth international conference on applications of digital information and web technologies (ICADIWT), Chennai, India (pp. 244–249).

  20. Belbachir, R., Mekkakia, Z. M., & Kies, A. (2011). Towards a new approach in available bandwidth measures on mobile ad hoc networks. Proceedings of Acta Polytechnica Hungarica,8(4), 133–148.

    Google Scholar 

  21. Nguyen, N. V., Lassous, I. G., Moraru, V., & Sarr, C. (2011). Retransmission-based available bandwidth estimation in IEEE 802.11-based multihop wireless networks. In Proceedings of the 14th acm international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 377–384).

  22. Chaudhari, S. S., & Biradar, R. C. (2015). Available bandwidth estimation using collision probability, idle period synchronization and random waiting time in MANET’s: Cognitive agent based approach. Wireless Personal Communications,85(3), 597–621.

    Article  Google Scholar 

  23. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journals on Selected Area in Communication,18(3), 535–547.

    Article  Google Scholar 

  24. Bianchi, G. (1998). IEEE 802.11-saturated throughput analysis. IEEE Communications Letters,2(12), 318–320.

    Article  Google Scholar 

  25. Wu, H., Peng, Y., Long, K., Cheng, S., & Ma, J. (2002). Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and enhancement. In Proceedings of twenty-first annual joint conference of the IEEE computer and communication societies (pp. 599–607).

  26. Chatzimisios, P., Boucouvalas, A. C., & Vitas, V. (2005). Performance analysis of IEEE 802.11 MAC protocol for wireless LANs. International Journal of Communication Systems,18(6), 545–569.

    Article  MATH  Google Scholar 

  27. Ziouva, E., & Antonakopoulos, T. (2002). CSMA/CA performance under high traffic conditions: Throughput and delay analysis. Journal of Computer Communications,25(3), 313–321.

    Article  Google Scholar 

  28. IEEE 802.11. (1999). IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Higher-speed physical layer extension in the 2.4 GHz band. IEEE standard 802.11b, September 1999.

  29. Foh, C. H., & Tantra, J. W. (2005). Comments on IEEE 802.11 saturation throughput analysis with freezing of backoff counters. IEEE Communication Letters,9(2), 130–132.

    Article  Google Scholar 

  30. Li, Y., Wang, C., Long, K., & Zhao, W. (2008). Modeling channel access delay and Jitter of IEEE 802.11 DCF. Wireless Personal Communications,47, 417–440.

    Article  Google Scholar 

  31. Li, Y., Ke-Ping, L., Wei-Liang, Z., & Qian-Bin, C. (2006). A novel random backoff algorithm to enhance the performance of IEEE 802.11 DCF. Wireless Personal Communications,36(1), 29–44.

    Article  Google Scholar 

  32. Li, Y., Wang, C., & You, X. (2009). The Jamming problem in IEEE 802.11-based mobile ad hoc networks with hidden terminals: Performance analysis and enhancement. International Journal of Communication Systems,22(8), 937–958.

    Article  Google Scholar 

  33. Kumar, P., & Krishan, A. (2010). Saturation throughput analysis of IEEE 802.11 b wireless local area networks under high interference considering capture effects. International Journal of Computer Science and Information Security, IJCSIS,7(1), 32–39.

    Google Scholar 

  34. Daneshgaran, F., Laddomada, M., Mesiti, F., Mondin, M., et al. (2008). Unsaturated throughput analysis of IEEE 802.11 in presence of non-ideal transmission channel and capture effects. IEEE Transaction on Wireless Communications,7(4), 1276–1286.

    Article  Google Scholar 

  35. Xu, X., & Lin, X. (2006). Throughput enhancement of the IEEE 802.11 DCF in fading channel. In IEEE international conference on wireless and optical communications networks. IEEE, Banglore, India.

  36. Yin, J., Wang, X., & Agrawal, D. P. (2006). Impact of bursty error rates on the performance of wireless local area networks (WLAN). Ad Hoc Networks,4(5), 651–668.

    Article  Google Scholar 

  37. Liaw, Y. S., Dadej, A., & Jayasuriya, A. (2005). Performance analysis of IEEE 802.11 DCF under limited load. In Proceedings of Asia-Pacific conference on communications, Australia (pp. 759–763).

  38. Malone, D., Duffy, K., & Leith, D. (2007). Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transaction on Networking,15(1), 159–172.

    Article  Google Scholar 

  39. Dhanasekaran, S., & Krishan, A. (2010). Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment. International Journal of Automation and Computing,7(1), 95–104.

    Article  Google Scholar 

  40. Laddomada, M., Mesiti, F., Mondin, M., & Daneshgaran, F. (2010). On the throughput performance of multirate IEEE 802.11 networks with variable-loaded stations: Analysis, modeling, and a novel proportional fairness criterion. IEEE Transaction on Wireless Communications,9(5), 1594–1607.

    Article  Google Scholar 

  41. Kumar, A., Altman, E., Miorandi, D., Goyal, M., et al. (2007). New insight from a fixed point analysis of single cell IEEE 802.11 WLAN. IEEE/ACM Transaction on Networking,15(3), 588–601.

    Article  Google Scholar 

  42. Zhao, Q., Tsang, D. H. K., & Sakurai, T. (2009). A simple and approximation model for non-saturated IEEE 802.11 DCF. IEEE Transaction on Mobile Computing,8(11), 1539–1553.

    Article  Google Scholar 

  43. Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking,8(6), 785–799.

    Article  Google Scholar 

  44. Cali, F., Conti, M., & Gregori, E. (2000). IEEE 802.11 Protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE Journal on Selected Areas in Communications,18(9), 1774–1786.

    Article  Google Scholar 

  45. German, R., & Heindi, A. (1999). Performance evaluation of IEEE 802.11 wireless LANs with stochastic Petri Nets. In proceedings 8th international workshop on petri nets and performance models, PNPM’99. IEEE, Zaragoza, Spain (pp. 44–53).

  46. Jayaparvarthy, R., Anand, S., Dharmaraja, S., & Srikanth, S. (2007). Performance analysis of IEEE 802.11 DCF with stochastic reward nets. International Journal of Communication Systems,20(3), 273–296.

    Article  Google Scholar 

  47. Younes, O., & Thomas, N. (2013). Modelling and performance analysis of multi-hop ad hoc networks. Simulation Modelling Practice and Theory,38, 69–97.

    Article  Google Scholar 

  48. Yadollahzadeh Tabari, M., & Pouyan, A. A. (2017). Misbehavior analysis of IEEE 802.11 MAC layer in mobile ad hoc network using stochastic reward nets. International Journal of Communication Systems,30(16), e3385.

    Article  Google Scholar 

  49. Hu, X., Jiao, L., & Li, Z. (2016). Modelling and performance analysis of 802.11 using Coloured Petri Nets. The Computer Journal, OUP,59(10), 1563–1580.

    Article  MathSciNet  Google Scholar 

  50. Masri, A., Bourdeaudhuy, T., & Toguyeni, T. (2009). Performance analysis of IEEE 802.11 wireless networks with object oriented Petri Nets. Electronic Notes in Theoretical Computer Science,242(2), 73–85.

    Article  Google Scholar 

  51. Li, Y., Wang, C., You, X., Zhao, W., & Sohraby, K. (2011). Spare node cooperative method for IEEE 802.11 networks. Wireless Networks,17(3), 671–683.

    Article  Google Scholar 

  52. Li, Y., Zhang, Z., Wang, C., Zhao, W., & Chen, H. (2013). Blind cooperative communications for multihop ad hoc wireless networks. IEEE Transactions on Vehicular Technology,62(7), 3110–3122.

    Article  Google Scholar 

  53. Li, Y., Song, S., & Daneshmand, M. (2016). A store-and-forward cooperative MAC for wireless ad hoc networks. Mobile Networks and Applications,21(6), 1024–1031.

    Article  Google Scholar 

  54. Hoang, T.-M., Bui, V.-K., & Nguyen, T.-T. (2017). The performance evaluation of an IEEE 802.11 network containing misbehavior nodes under different backoff algorithms. Security and Communication Networks,2017, 2459780.

    Article  Google Scholar 

  55. Swain, P., Chakraborty, S., Nandi, S., & Bhaduri, P. (2014). Performance modeling and evaluation of IEEE 802.11 IBSS power save mode. Ad Hoc Networks,13, 336–350.

    Article  Google Scholar 

  56. Soares, M. S., & Carvalho, M. M. (2017). Revisiting the analytical modeling of the IEEE 802.11 power save mode for independent basic service sets (IBSS). In PE-WASUN’17 Proceedings of the 14th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, Miami, Florida, USA (pp. 17–24).

  57. Bozkurt, A. (2016). Optimal delay analysis for real-time traffics over IEEE 802.11 wireless LANs. EURASIP Journal on Wireless Communication and Networking,52, 1–13.

    Google Scholar 

  58. Lepaja, S., Maraj, A., & Berzati, S. (2019). WLAN planning and performance evaluation for commercial applications. Data-Centeric Business and Applications,20, 53–69.

    Article  Google Scholar 

  59. Eyadeh, A., Jarrah, M., & Aljumaili, A. (2019). Modeling and simulation of performance limits in IEEE 802.11 point-coordination function. International Journal of Recent Technology and Engineering (IJRTE),8(4), 5575–5580.

    Article  Google Scholar 

  60. Gupta, N., & Rai, C. S. (2014). Performance evaluation of IEEE 802.11 DCF in single hop ad hoc networks. Wireless Personal Communication Journal,79(3), 2171–2193.

    Article  Google Scholar 

  61. Belbachir, R., Mazza, Z. M., Kies, A., & Belhadri, M. (2013). Collision’s issue: Towards a new approach to quantify and predict the bandwidth losses. In Global information infrastructure symposiumGIIS 2013, IEEE, Trento, Italy (pp. 1–4).

  62. Shadrin, A. (1995). Error bounds for lagrange interpolation. Journal of Approximation Theory,80, 25–49.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukta, Gupta, N. Analytical approach towards available bandwidth estimation in wireless ad hoc networks. Wireless Netw 26, 2957–2982 (2020). https://doi.org/10.1007/s11276-020-02249-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02249-8

Keywords

Navigation