ECRP: an energy-aware cluster-based routing protocol for wireless sensor networks

  • Noureddine MoussaEmail author
  • Zakaria Hamidi-Alaoui
  • Abdelbaki El Belrhiti El Alaoui


Energy conservation is the main issue in wireless sensor networks. Many existing clustering protocols have been proposed to balance the energy consumption and maximize the battery lifetime of sensor nodes. However, these protocols suffer from the excessive overhead due to repetitive clustering resulting in high-energy consumption. In this paper, we propose energy-aware cluster-based routing protocol (ECRP) in which not only the cluster head (CH) role rotates based on energy around all cluster members until the end of network functioning to avoid frequent re-clustering, but also it can adapt the network topology change. Further, ECRP introduces a multi-hop routing algorithm so that the energy consumption is minimized and balanced. As well, a fault-tolerant mechanism is proposed to cope up with the failure of CHs and relay nodes. We perform extensive simulations on the proposed protocol using different network scenarios. The simulation results demonstrate the superiority of ECRP compared with recent and relevant existing protocols in terms of main performance metrics.


Wireless sensor networks Clustering Routing Fault tolerance Network lifetime 



  1. 1.
    Abbasi, A. H., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14–15), 2826–2841.CrossRefGoogle Scholar
  2. 2.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRefGoogle Scholar
  3. 3.
    Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.CrossRefGoogle Scholar
  4. 4.
    Bari, A., et al. (2012). Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Computer Communications, 35(3), 320–333.CrossRefGoogle Scholar
  5. 5.
    Kuila, P., & Jana, P. K. (2012). Energy efficient load-balanced clustering algorithm for wireless sensor network. Procedia Technology, 6, 771–777.CrossRefGoogle Scholar
  6. 6.
    Naeimi, S., Ghafghazi, H., Chow, C. O., & Ishii, H. (2012). A survey on the taxonomy of cluster-based routing protocols for homogeneous wireless sensor networks. Sensors, 12(6), 7350–7409.CrossRefGoogle Scholar
  7. 7.
    Haseeb, K., Abu Bakar, K., Abdullah, A. H., Ahmed, A., Darwish, T., & Ullah, F. (2016). A dynamic energy-aware fault tolerant routing protocol for wireless sensor networks. Computers and Electrical Engineering, 56, 557–575.CrossRefGoogle Scholar
  8. 8.
    Darabkh, K. A., Al-Maaitah, N. J., Jafar, I. F., & Khalifeh, A. F. (2018). EA-CRP: A novel energy-aware clustering and routing protocol in wireless sensor networks. Computers & Electrical Engineering, 72, 702–718.CrossRefGoogle Scholar
  9. 9.
    Darabkh, K. A., El-Yabroudi, M. Z., & El-Mousa, A. H. (2019). BPA-CRP: A balanced power-aware clustering and routing protocol for wireless sensor networks. Ad Hoc Networks, 82, 155–171.CrossRefGoogle Scholar
  10. 10.
    Heinzelman, W.R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 1-10)Google Scholar
  11. 11.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  12. 12.
    Al-Baz, A., & El-Sayed, A. (2017). A new algorithm for cluster head selection in LEACH protocol for wireless sensor networks. International Journal of Communication Systems, 31(1), 1–13.Google Scholar
  13. 13.
    Mazumdar, N., & Om, H. (2017). DUCR: Distributed unequal cluster-based routing algorithm for heterogeneous wireless sensor networks. International Journal of Communication Systems, 30(18), 1–14.CrossRefGoogle Scholar
  14. 14.
    Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41, 177–190.CrossRefGoogle Scholar
  15. 15.
    Naranjo, P. G. V., Shojafar, M., Mostafaei, H., et al. (2017). P-SEP: A prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks. The Journal of Supercomputing, 73(2), 733–755.CrossRefGoogle Scholar
  16. 16.
    Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks. Ph.D. dissertation, Massachusetts Institute of Technology.Google Scholar
  17. 17.
    Nam, D. H., & Min, H. K. (2007). An energy-efficient clustering using a round-robin method in a wireless sensor network. In Proceedings of the 5th ACIS international conference on software engineering research, management & applications (SERA 2007), Busan, South Korea (pp. 54–60).Google Scholar
  18. 18.
    Subhashree, V. K., Tharini, C., & Swarna, L. M. (2014). Modified LEACH: A QoS-aware clustering algorithm for wireless sensor networks. In 2014 International conference on communication and network technologies (ICCNT) (pp. 119–123).Google Scholar
  19. 19.
    Zhao, F., Xu, Y., & Li, R. (2012). Improved LEACH routing communication protocol for a wireless sensor network. International Journal of Distributed Sensor Networks, 8(12), 1–6.Google Scholar
  20. 20.
    Xu, J., et al. (2010). Distance measurement model based on rssi in WSN. Wireless Sensor Network, 2(8), 606–611.CrossRefGoogle Scholar
  21. 21.
    Pahlavan, K., & Levesque, A. H. (2005). Wireless information networks. New York: Wiley.CrossRefGoogle Scholar
  22. 22.
    Boulis, A. (2011). Castalia user’s manual. NICTA.Google Scholar
  23. 23.
    Pandya, A., & Mehta, M. (2012). A novel energy efficient routing approach using multipath ring routing and clustering for WSN. In ACM Proceedings of the CUBE international information technology conference (pp. 138–143)Google Scholar
  24. 24.
    Castalia, Accessed 20 April 2018

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Computer Networks and Systems Laboratory, Faculty of SciencesMoulay Ismail UniversityZitouneMorocco

Personalised recommendations