Performance analysis of maximal ratio transmission with receiver antenna selection over correlated Nakagami-m fading channels

  • Sudakar Singh ChauhanEmail author
  • Sanjay Kumar


In this paper, we develop a framework to analyze the performance analysis of multi-antenna system that employ maximal-ratio transmission with receive antenna selection (MRT/RAS) over correlated Nakagami-m fading channels. We derive the probability density function (pdf) of the post processing signal-to-noise ratio at the output of the decoder, when spatial fading correlation is assumed. Utilizing the pdf, a closed-form analytical expression is derived in terms of channel capacity, outage probability and symbol error rate (SER) of M-ary modulation schemes. It can be observed that the performance loss in terms of capacity and SER is negligible when the separation between adjacent antennas is as large as 0.5 for exponential correlation model. Numerical outcomes considering the spatial correlation represent the performance characteristics and analyze their impacts on channel capacity, outage probability and SER of MRT/RAS system.


Antenna selection Channel capacity Correlated Nakagami-m fading channels Maximal-ratio transmission (MRT) Outage probability and symbol error rate (SER) 



  1. 1.
    Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10, 585–595.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–355.CrossRefGoogle Scholar
  3. 3.
    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communication. IEEE Journal Selected Areas in Communications, 16(8), 1451–1458.CrossRefGoogle Scholar
  4. 4.
    Gore, D. A., & Paulraj, A. (2002). MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.CrossRefGoogle Scholar
  5. 5.
    Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO system with antenna selection. IEEE Transactions on Wireless Communications, 4(4), 1759–1772.CrossRefGoogle Scholar
  6. 6.
    Zeng, X. N., & Ghrayeb, A. (2004). Performance bounds for space-time block codes with receive antenna selection. IEEE Transactions on Information Theory, 50, 2130–2137.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, Z., Yuan, J., & Vucetic, B. (2005). Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 54(4), 1312–1321.CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Chi, Z., Li, Y., & Vucetic, B. (2009). Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 8(1), 424–431.CrossRefGoogle Scholar
  9. 9.
    Wang, B. Y., & Zheng, W. X. (2009). BER performance of transmitter antenna selection/receiver-MRC over arbitrarily correlated fading channels. IEEE Transactions on Vehicular Technology, 58(6), 3088–3092.CrossRefGoogle Scholar
  10. 10.
    Ramya, T. R., & Bhashyam, S. (2009). Using delayed feedback for antenna selection in MIMO systems. IEEE Transactions on Wireless Communications, 8(12), 6059–6067.CrossRefGoogle Scholar
  11. 11.
    Rui, X. (2012). Analysis of MIMO MRT/SC system. Wireless Personal Communications, 62(1), 117–126.CrossRefGoogle Scholar
  12. 12.
    Coskun, A. F., & Kucur, O. (2012). Performance analysis maximal-ratio transmission/receive antenna selection in Nakagami-m fading channels with channel estimation errors and feedback delay. IEEE Transactions on Vehicular Technology, 61(3), 1099–1108.CrossRefGoogle Scholar
  13. 13.
    Luo, L., Zeidler, J. R., & McLaughlin, S. (2001). Performance analysis of compact antenna arrays with MRC in correlated Nakagami fading channels. IEEE Transactions on Vehicular Technology, 50(1), 267–277.CrossRefGoogle Scholar
  14. 14.
    Chauhan, S. S., & Kumar, S. (2014). Capacity analysis of adaptive transmission with space-time block codes in spatially correlated MIMO Nakagami-m fading channels. Wireless Personal Communication, 79(2), 1211–1222.CrossRefGoogle Scholar
  15. 15.
    Proakis, J. G. (2000). Digital communication (4th ed.). New York: McGraw-Hill.Google Scholar
  16. 16.
    David, H. A. (1970). Order statistics. New York: Wiley.zbMATHGoogle Scholar
  17. 17.
    Alouini, M. S., & Goldsmith, A. J. (1999). Capacity of Rayleigh Fading channels under different adaptive transmission and diversity combining technique. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.CrossRefGoogle Scholar
  18. 18.
    Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels: A unified approach to performance analysis. New York: Wiley.CrossRefGoogle Scholar
  19. 19.
    Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). San Diego, CA: Academic.zbMATHGoogle Scholar
  20. 20.
    Cho, K., & Yoon, D. (2002). On the general BER expression of one-and two-dimensional amplitude modulations. IEEE Transactions on Communications, 50, 1074–1080.CrossRefGoogle Scholar
  21. 21.
    Lu, J., Letaief, K. B., Chuang, J. C. I., et al. (1999). M-PSK and M-QAM BER computation using signal-space concepts. IEEE Transactions on Communications, 47(2), 181–184.CrossRefGoogle Scholar
  22. 22.
    Loskot, P., & Beaulieu, N. C. (2009). Prony and polynomial approximations for evaluation of the average probability of error over slow-fading channels. IEEE Transactions on Vehicular Technology, 58(3), 1269–1280.CrossRefGoogle Scholar
  23. 23.
    Lombardo, P., Fedele, G., & Rao, M. M. (1999). MRC performance for binary signals in Nakagami fading with general branch correlation. IEEE Transactions on Communications, 47(1), 44–52.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyKurukshetraIndia
  2. 2.Department of Electronics and Communication EngineeringBirla Institute of TechnologyMesra, RanchiIndia

Personalised recommendations