Advertisement

Design and evaluation of an LQI-based beaconless routing protocol for a heterogeneous MSN

  • Muhammad Taufiq Nuruzzaman
  • Huei-Wen FerngEmail author
Article
  • 21 Downloads

Abstract

In a mobile sensor network with a mobile sink, choosing the next hop depends on the current location of the sink. This necessitates a frequent update of routing paths within the network. In this paper, a link quality indicator (LQI) measured by a sensor when receiving a POLLING packet directly from the sink is employed to acquire the relative position of the sensor to the sink. By doing so, the sensor chooses the next hop with a higher LQI value (alternatively, closer to the mobile sink). Due to the heterogeneity of transmission power and for guaranteeing the reachability of the chosen next hop, an energy-efficient and reliable LQI-based beaconless routing (LQI-BLR) protocol is proposed in this paper. To avoid flooding REPOLLING packets, only the sensors with low LQI values are allowed to broadcast the REPOLLING packet to create a routing path for the sensors outside the transmission range of the sink. Through analytical and simulation approaches, the performance of LQI-BLR and the leader-based routing (LBR) Burgos et al. (Sensors 17(7):1587, 2017.  https://doi.org/10.3390/s17071587) is compared. With extensive real-scenario simulations, we successfully show that LQI-BLR outperforms LBR Burgos et al. (Sensors 17(7):1587, 2017.  https://doi.org/10.3390/s17071587) and the data-driven routing protocol (DDRP) Shi et al. (Int J Commun Syst 26(10):1341–1355, 2013.  https://doi.org/10.3390/s17071587 in terms of packet delivery ratio, energy consumption, and packet delivery delay.

Keywords

Heterogeneous mobile sensor network Routing protocol Mobile sink Link quality indicator 

Notes

Acknowledgements

The work of H.W. Ferng was supported by the Ministry of Science and Technology (MOST), Taiwan under contract MOST 107-2221-E- 011-070-MY2.

References

  1. 1.
    Burgos, U., Amozarrain, U., Gómez-Calzado, C., & Lafuente, A. (2017). Routing in mobile wireless sensor networks: A leader-based approach. Sensors, 17(7), 1587.  https://doi.org/10.3390/s17071587.CrossRefGoogle Scholar
  2. 2.
    Shi, L., Zhang, B., Mouftah, H. T., & Ma, J. (2013). DDRP: An efficient data-driven routing protocol for wireless sensor networks with mobile sinks. International Journal of Communication Systems, 26(10), 1341–1355.  https://doi.org/10.1002/dac.2315.CrossRefGoogle Scholar
  3. 3.
    Hu, X., Bao, M., Zhang, X.P., Wen, S., Li, X., & Hu, Y.H., Quantized kalman filter tracking in directional sensor networks. IEEE Transactions on Mobile Computing (in press).  https://doi.org/10.1109/TMC.2017.2742948.CrossRefGoogle Scholar
  4. 4.
    Mahboubi, H., Masoudimansour, W., Aghdam, A. G., & Sayrafian-Pour, K. (2017). An energy-efficient target-tracking strategy for mobile sensor networks. IEEE Transactions on Cybernetics, 47(2), 511–523.  https://doi.org/10.1109/TCYB.2016.2519939.CrossRefzbMATHGoogle Scholar
  5. 5.
    Dominguez-Morales, J. P., Rios-Navarro, A., Dominguez-Morales, M., Tapiador-Morales, R., Gutierrez-Galan, D., Cascado-Caballero, D., et al. (2016). Wireless sensor network for wildlife tracking and behavior classification of animals in Donana. IEEE Communications Letters, 20(12), 2534–2537.  https://doi.org/10.1109/LCOMM.2016.2612652.CrossRefGoogle Scholar
  6. 6.
    Gupta, H. P., Venkatesh, T., Rao, S. V., Dutta, T., & Iyer, R. R. (2017). Analysis of coverage under border effects in three-dimensional mobile sensor networks. IEEE Transactions on Mobile Computing, 16(9), 2436–2449.  https://doi.org/10.1109/TMC.2016.2636832.CrossRefGoogle Scholar
  7. 7.
    Le, D. V., Oh, H., & Yoon, S. (2016). Environment learning-based coverage maximization with connectivity constraints in mobile sensor networks. IEEE Sensors Journal, 16(10), 3958–3971.  https://doi.org/10.1109/JSEN.2016.2537840.CrossRefGoogle Scholar
  8. 8.
    Tunca, C., Isik, S., Donmez, M., & Ersoy, C. (2014). Distributed mobile sink routing for wireless sensor networks: A survey. IEEE Communications Surveys Tutorials, 16(2), 877–897.  https://doi.org/10.1109/SURV.2013.100113.00293.CrossRefGoogle Scholar
  9. 9.
    Yu, S., Zhang, B., Li, C., & Mouftah, H. (2014). Routing protocols for wireless sensor networks with mobile sinks: A survey. IEEE Communications Magazine, 52(7), 150–157.  https://doi.org/10.1109/MCOM.2014.6852097.CrossRefGoogle Scholar
  10. 10.
    Yun, Y., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9(9), 1308–1318.  https://doi.org/10.1109/TMC.2010.76.CrossRefGoogle Scholar
  11. 11.
    Yun, Y., Xia, Y., Behdani, B., & Smith, J. C. (2013). Distributed algorithm for lifetime maximization in a delay-tolerant wireless sensor network with a mobile sink. IEEE Transactions on Mobile Computing, 12(10), 1920–1930.  https://doi.org/10.1109/TMC.2012.152.CrossRefGoogle Scholar
  12. 12.
    Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19(10), 3305–3319.  https://doi.org/10.1109/TITS.2017.2778939.CrossRefGoogle Scholar
  13. 13.
    Moteiv Corporation: TMote Sky: Ultra low power ieee 802.15.4 compliant wireless sensor module (2006). http://www.snm.ethz.ch/Projects/TmoteSky.
  14. 14.
    Texas Instruments: CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4,6LoWPAN, and ZigBee\(\textregistered \) Applications (2015). http://www.ti.com/lit/ds/symlink/cc2538.pdf.
  15. 15.
    Texas Instruments: CC2640 SimpleLink\(^{{tm}}\) Bluetooth\(\textregistered \) Wireless MCU (2016). http://www.ti.com/lit/ds/symlink/cc2640.pdf.
  16. 16.
    Jiang, D., Zhang, P., Lv, Z., & Song, H. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.  https://doi.org/10.1109/JIOT.2016.2613111.CrossRefGoogle Scholar
  17. 17.
    Moussaoui, A., & Boukeream, A. (2015). A survey of routing protocols based on link-stability in mobile ad hoc networks. Journal of Network and Computer Applications, 47, 1–10.  https://doi.org/10.1016/j.jnca.2014.09.007.CrossRefGoogle Scholar
  18. 18.
    Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in Internet of Things: Taxonomies and open challenges. Mobile Networks and Applications, 24(3), 796–809.  https://doi.org/10.1007/s11036-018-1089-9.CrossRefGoogle Scholar
  19. 19.
    Nguyen, L. T., Defago, X., Beuran, R., & Shinoda, Y. (2008) An energy efficient routing scheme for mobile wireless sensor networks. In Proceedings of the IEEE international symposium on wireless communication systems (pp. 568–572).  https://doi.org/10.1109/ISWCS.2008.4726120.
  20. 20.
    Kumar, G. S., Vinu, P. M. V., & Jacob, K. P. (2008). Mobility metric based LEACH-Mobile protocol. In Proceedings of the international conference on advanced computing and communications (pp. 248–253).  https://doi.org/10.1109/ADCOM.2008.4760456.
  21. 21.
    Carroll, A., & Heiser, G. (2010) An analysis of power consumption in a smartphone. In Proceedings of the USENIX conference on USENIX annual technical conference (pp. 21–21).Google Scholar
  22. 22.
    PackStatus: GPS tracking and sensoring devices (2019). https://www.packstatus.com/gps-tracking-sensoring-devices/.
  23. 23.
    Conti, M., & Giordano, S. (2014). Mobile ad hoc networking: Milestones, challenges, and new research directions. IEEE Communications Magazine, 52(1), 85–96.  https://doi.org/10.1109/MCOM.2014.6710069.CrossRefGoogle Scholar
  24. 24.
    Alexander, R., Brandt, A., Vasseur, J., Hui, J., Pister, K., Thubert, P., Levis, P., Struik, R., Kelsey, R., & Winter, T. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550.  https://doi.org/10.17487/RFC6550. https://rfc-editor.org/rfc/rfc6550.txt.
  25. 25.
    Medjek, F., Tandjaoui, D., Romdhani, I., & Djedjig, N. (2017) Performance evaluation of RPL protocol under mobile sybil attacks. In Proceedings of the IEEE international conference on trust, security and privacy in computing and communications (pp. 1049–1055).  https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.351.
  26. 26.
    Wadhaj, I., Kristof, I., Romdhani, I., & Al-Dubai, A. (2015). Performance evaluation of the RPL protocol in fixed and mobile sink low-power and lossy-networks. In Proceedings of the IEEE international conference on ubiquitous computing and communications (pp. 1600–1605).  https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.241.
  27. 27.
    Sara, G. S., & Sridharan, D. (2014). Routing in mobile wireless sensor network: A survey. Telecommunication Systems, 57(1), 51–79.  https://doi.org/10.1007/s11235-013-9766-2.CrossRefGoogle Scholar
  28. 28.
    Nuruzzaman, M. T., & Ferng, H. W. (2016) A low energy consumption routing protocol for mobile sensor networks with a path-constrained mobile sink. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–6).  https://doi.org/10.1109/ICC.2016.7511316.
  29. 29.
    Borsani, L., Guglielmi, S., Redondi, A., & Cesana, M. (2011) Tree-based routing protocol for mobile wireless sensor networks. In Proceedings of the international conference on wireless on-demand network systems and services (pp. 164–170).  https://doi.org/10.1109/WONS.2011.5720188.
  30. 30.
    Lin, T. Y., Santoso, H. A., Wu, K. R., & Wang, G. L. (2017). Enhanced deployment algorithms for heterogeneous directional mobile sensors in a bounded monitoring area. IEEE Transactions on Mobile Computing, 16(3), 744–758.  https://doi.org/10.1109/TMC.2016.2563435.CrossRefGoogle Scholar
  31. 31.
    Cakici, S., Erturk, I., Atmaca, S., & Karahan, A. (2014). A novel cross-layer routing protocol for increasing packet transfer reliability in mobile sensor networks. Wireless Personal Communications, 77(3), 2235–2254.  https://doi.org/10.1007/s11277-014-1635-0.CrossRefGoogle Scholar
  32. 32.
    Chang, T. J., Wang, K., & Hsieh, Y. L. (2008). A color-theory-based energy efficient routing algorithm for mobile wireless sensor networks. Computer Networks, 52(3), 531–541.  https://doi.org/10.1016/j.comnet.2007.10.004.CrossRefzbMATHGoogle Scholar
  33. 33.
    Choi, L., Jung, J., Cho, B., & Choi, H. (2008). M-Geocast: Robust and energy-efficient geometric routing for mobile sensor networks. In Proceedings of the IFIP international workshop on software technologies for embedded and ubiquitous systems (pp. 304–316).  https://doi.org/10.1109/MOBHOC.2007.4428612.
  34. 34.
    Huo, G., & Wang, X. (2008) An opportunistic routing for mobile wireless sensor networks based on RSSI. In Proceedings of the international conference on wireless communications, networking and mobile computing (pp. 1–4).  https://doi.org/10.1109/WiCom.2008.955.
  35. 35.
    Karp, B., & Kung, H.T. (2000) GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the international conference on mobile computing and networking (MobiCom), MobiCom ’00 (pp. 243–254). ACM, New York, NY, USA.  https://doi.org/10.1145/345910.345953.
  36. 36.
    Komai, Y., Sasaki, Y., Hara, T., & Nishio, S. (2014). KNN query processing methods in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 13(5), 1090–1103.  https://doi.org/10.1109/TMC.2013.133.CrossRefGoogle Scholar
  37. 37.
    Ruhrup, S., & Stojmenovic, I. (2013). Optimizing communication overhead while reducing path length in beaconless georouting with guaranteed delivery for wireless sensor networks. IEEE Transactions on Computers, 62(12), 2440–2453.  https://doi.org/10.1109/TC.2012.148.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Keally, M., Zhou, G., & Xing, G. (2009) Sidewinder: A predictive data forwarding protocol for mobile wireless sensor networks. In Proceedings of the IEEE conference on sensor, mesh and ad hoc communications and networks (pp. 1–9).  https://doi.org/10.1109/SAHCN.2009.5168972.
  39. 39.
    Goto, K., Sasaki, Y., Hara, T., & Nishio, S. (2013). Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks. Mobile Information Systems, 9(4), 295–314.  https://doi.org/10.3233/MIS-130164.CrossRefGoogle Scholar
  40. 40.
    Khalid, S., Masood, A., Hussain, F. B., Abbas, H., & Ghafoor, A. (2014) Load balanced routing for lifetime maximization in mobile wireless sensor networks. International Journal of Distributed Sensor Networks.  https://doi.org/10.1155/2014/979086.CrossRefGoogle Scholar
  41. 41.
    Huang, X., Zhai, H., & Fang, Y. (2008). Robust cooperative routing protocol in mobile wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 5278–5285.  https://doi.org/10.1109/T-WC.2008.060680.CrossRefGoogle Scholar
  42. 42.
    Hayes, T., & Ali, F. (2015). Proactive highly ambulatory sensor routing (PHASeR) protocol for mobile wireless sensor networks. Pervasive and Mobile Computing, 21, 47–61.  https://doi.org/10.1016/j.pmcj.2015.04.005.CrossRefGoogle Scholar
  43. 43.
    Hayes, T., & Ali, F. (2016). Robust ad-hoc sensor routing (RASeR) protocol for mobile wireless sensor networks. Ad Hoc Networks, 50, 128–144.  https://doi.org/10.1016/j.adhoc.2016.07.013.CrossRefGoogle Scholar
  44. 44.
    Raju, M., Oliveira, T., & Agrawal, D. P. (2012) A practical distance estimator through distributed RSSI/LQI processing: An experimental study. In Proceedings of the IEEE international conference on communications (ICC) (pp. 6575–6579).  https://doi.org/10.1109/ICC.2012.6364794.
  45. 45.
    Xiang, Y., Li, J., & Wang, W. (2013) Research on distance measurement based on LQI. In Procedings of the international conference on communications, signal processing, and systems (pp. 1159–1171).  https://doi.org/10.1007/978-3-319-00536-2_132.Google Scholar
  46. 46.
    Wang, Y. C. (2014). Mobile sensor networks. ACM Computing Surveys, 47(1), 1–36.  https://doi.org/10.1145/2617662.CrossRefGoogle Scholar
  47. 47.
    IEEE: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs) (2006). https://standards.ieee.org/standard/802_15_4-2006.html.
  48. 48.
    De, P., Liu, Y., & Das, S. K. (2010). Energy-efficient reprogramming of a swarm of mobile sensors. IEEE Transactions on Mobile Computing, 9(5), 703–718.  https://doi.org/10.1109/TMC.2009.159.CrossRefGoogle Scholar
  49. 49.
  50. 50.
    Braun, T., Heissenbüttel, M., & Roth, T. (2010). Performance of the beacon-less routing protocol in realistic scenarios. Ad Hoc Networks, 8(1), 96–107.  https://doi.org/10.1016/j.adhoc.2009.04.014.CrossRefGoogle Scholar
  51. 51.
    Noureddine, H., Ni, Q., & Al-Raweshidy, H. (2010) SS-CBF: Sender-based suppression algorithm for contention-based forwarding in mobile ad-hoc networks. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1810–1813).  https://doi.org/10.1109/PIMRC.2010.5671638.
  52. 52.
    Sinha, A., & Chandrakasan, A. (2001). Dynamic power management in wireless sensor networks. IEEE Design Test of Computers, 18(2), 62–74.  https://doi.org/10.1109/54.914626.CrossRefGoogle Scholar
  53. 53.
    Fallahi, A., & Hossain, E. (2007). Qos provisioning in wireless video sensor networks: a dynamic power management framework. IEEE Wireless Communications, 14(6), 40–49.  https://doi.org/10.1109/MWC.2007.4407226.CrossRefGoogle Scholar
  54. 54.
    Dargie, W. (2012). Dynamic power management in wireless sensor networks: State-of-the-art. IEEE Sensors Journal, 12(5), 1518–1528.  https://doi.org/10.1109/JSEN.2011.2174149.CrossRefGoogle Scholar
  55. 55.
    Sausen, P. S., de Brito Sousa, J. R., Spohn, M. A., Perkusich, A., & Lima, A. M. N. (2008). Dynamic power management with scheduled switching modes. Computer Communications, 31(15), 3625–3637.  https://doi.org/10.1016/j.comcom.2008.06.019.CrossRefGoogle Scholar
  56. 56.
    Salvadori, F., de Campos, M., Sausen, P. S., de Camargo, R. F., Gehrke, C., Rech, C., et al. (2009). Monitoring in industrial systems using wireless sensor network with dynamic power management. IEEE Transactions on Instrumentation and Measurement, 58(9), 3104–3111.  https://doi.org/10.1109/TIM.2009.2016882.CrossRefGoogle Scholar
  57. 57.
    Hsu, R. C., Liu, C., & Wang, H. (2014). A reinforcement learning-based tod provisioning dynamic power management for sustainable operation of energy harvesting wireless sensor node. IEEE Transactions on Emerging Topics in Computing, 2(2), 181–191.  https://doi.org/10.1109/TETC.2014.2316518.CrossRefGoogle Scholar
  58. 58.
    Chen, X., Ma, M., & Liu, A. (2018). Dynamic power management and adaptive packet size selection for iot in e-healthcare. Computers and Electrical Engineering, 65, 357–375.  https://doi.org/10.1016/j.compeleceng.2017.06.010.CrossRefGoogle Scholar
  59. 59.
    Yoo, H., Shim, M., & Kim, D. (2012). Dynamic duty-cycle scheduling schemes for energy-harvesting wireless sensor networks. IEEE Communications Letters, 16(2), 202–204.  https://doi.org/10.1109/LCOMM.2011.120211.111501.CrossRefGoogle Scholar
  60. 60.
    Zhang, J., Li, Z., & Tang, S. (2016). Value of information aware opportunistic duty cycling in solar harvesting sensor networks. IEEE Transactions on Industrial Informatics, 12(1), 348–360.  https://doi.org/10.1109/TII.2015.2508745.CrossRefGoogle Scholar
  61. 61.
    Sharma, H., Haque, A., & Jaffery, Z. A. (2019). Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring. Ad Hoc Networks, 94, 101966.  https://doi.org/10.1016/j.adhoc.2019.101966.CrossRefGoogle Scholar
  62. 62.
    Lee, S. H., & Choi, L. (2015). Speed-mac: speedy and energy efficient data delivery mac protocol for real-time sensor network applications. Wireless Networks, 21(3), 883–898.  https://doi.org/10.1007/s11276-014-0827-6.CrossRefGoogle Scholar
  63. 63.
    Subramanian, A. K., & Paramasivam, I. (2017). Prin: A priority-based energy efficient mac protocol for wireless sensor networks varying the sample inter-arrival time. Wireless Personal Communications, 92(3), 863–881.  https://doi.org/10.1007/s11277-016-3581-5.CrossRefGoogle Scholar
  64. 64.
    Ryoo, I., Sun, K., Lee, J., & Kim, S. (2018). A 3-dimensional group management mac scheme for mobile iot devices in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 9(4), 1223–1234.  https://doi.org/10.1007/s12652-017-0557-6.CrossRefGoogle Scholar
  65. 65.
    Wong, Y. S., Chen, Y. S., Deng, D. J., & Huang, D. C. (2013). Nonpreemptive priority scheme for the s-mac protocol in multimedia mobile sensor networks. Telecommunication Systems, 52(4), 2533–2540.  https://doi.org/10.1007/s11235-011-9571-8.CrossRefGoogle Scholar
  66. 66.
    Yang, X., Wang, L., Su, J., & Gong, Y. (2018). Hybrid mac protocol design for mobile wireless sensors networks. IEEE Sensors Letters, 2(2), 1–4.  https://doi.org/10.1109/LSENS.2018.2828339.CrossRefGoogle Scholar
  67. 67.
    Armaghani, F. R., Jamuar, S. S., Khatun, S., & Rasid, M. F. A. (2011). Performance analysis of tcp with delayed acknowledgments in multi-hop ad-hoc networks. Wireless Personal Communications, 56(4), 791–811.  https://doi.org/10.1007/s11277-009-9848-3.CrossRefGoogle Scholar
  68. 68.
    Al-Jubari, A. M., Othman, M., Mohd Ali, B., & Abdul Hamid, N. A. W. (2013). An adaptive delayed acknowledgment strategy to improve tcp performance in multi-hop wireless networks. Wireless Personal Communications, 69(1), 307–333.  https://doi.org/10.1007/s11277-012-0575-9.CrossRefGoogle Scholar
  69. 69.
    NSNAM: ns-3 (2016). https://www.nsnam.org/ns-3-25/.
  70. 70.
    Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. Plos One, 13(5), 1–23.  https://doi.org/10.1371/journal.pone.0194302.CrossRefGoogle Scholar
  71. 71.
    Jiang, D., Nie, L., Lv, Z., & Song, H. (2016). Spatio-temporal kronecker compressive sensing for traffic matrix recovery. IEEE Access, 4(5), 3046–3053.  https://doi.org/10.1109/ACCESS.2016.2573264.CrossRefGoogle Scholar
  72. 72.
    Jiang, D., Wang, W., Shi, L., & Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering (in press).  https://doi.org/10.1109/TNSE.2018.2877597.
  73. 73.
    Jiang, D., Xu, Z., Chen, Z., Han, Y., & Xu, H. (2011). Joint time-frequency sparse estimation of large-scale network traffic. Computer Networks, 55(15), 3533–3547.  https://doi.org/10.1016/j.comnet.2011.06.027.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  2. 2.Department of InformaticsSunan Kalijaga State Islamic UniversityYogyakartaIndonesia

Personalised recommendations