Advertisement

Intelligent framework for radio access network design

  • Taras MaksymyukEmail author
  • Eugen Šlapak
  • Gabriel Bugár
  • Denis Horváth
  • Juraj Gazda
Article
  • 5 Downloads

Abstract

The evolution of 5G networks over the last few years has introduced a variety of technologies for more efficient radio access networks (RANs), which end up in ultra-dense heterogeneous infrastructure with deployments of high complexity. In this paper, we propose a new framework for RAN design in ultra-dense urban scenario based on the machine learning. The key idea of the proposed framework is to bring intelligent capabilities to the coverage planning problem for complex multi-tier scenarios, in order to achieve better network performance. We design our framework for small cells coverage optimization with 3D urban environment, macro cell locations, and realistic traffic statistics. Simulation results show that our proposed intelligent RAN framework significantly outperforms the conventional coverage design solutions, even after only a short learning time.

Graphic abstract

Keywords

RAN workflow HetNets Artificial intelligence Self-supervised learning Big data 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency, Project Numbers APVV-15-0055 and APVV-18-0214, Scientific Grant Agency of the Ministry of Education, science, research and sport of the Slovak Republic under the Contract No. 1/0268/19 and by the European Intergovernmental Framework COST Action CA15140: Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice. This research was also supported by the Project No. 0117U007177 “Designing the methods of adaptive radio resource management in LTE-U mobile networks for 4G/5G development in Ukraine,” funded by Ukrainian government.

Supplementary material

11276_2019_2172_MOESM1_ESM.mp4 (38.3 mb)
Supplementary material 1 (mp4 39218 KB)

References

  1. 1.
    Hwang, I., Song, B., & Soliman, S. S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.CrossRefGoogle Scholar
  2. 2.
    Collet, P., & Rennard, J.-P. (2008). Stochastic optimization algorithms. In: Intelligent information technologies: Concepts, methodologies, tools, and applications (pp. 1121–1137). IGI Global.Google Scholar
  3. 3.
    O’Leary, D. E. (2013). Artificial intelligence and big data. IEEE Intelligent Systems, 28(2), 96–99.CrossRefGoogle Scholar
  4. 4.
    Moysen, J., & Giupponi, L. (2018). From 4G to 5G: Self-organized network management meets machine learning. Computer Communications, 129, 248–268.CrossRefGoogle Scholar
  5. 5.
    Moysen, J., Giupponi, L., & Mangues-Bafalluy, J. (2016). On the potential of ensemble regression techniques for future mobile network planning. In IEEE Symposium on Computers and Communication (ISCC) (pp. 477–483). IEEE.Google Scholar
  6. 6.
    Popoola, S. I., Adetiba, E., Atayero, A. A., Faruk, N., & Calafate, C. T. (2018). Optimal model for path loss predictions using feed-forward neural networks. Cogent Engineering, 5(1), 1444345.CrossRefGoogle Scholar
  7. 7.
    Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access, 6, 32 328–32 338.CrossRefGoogle Scholar
  8. 8.
    Wang, X., Li, X., & Leung, V. C. (2015). Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access, 3, 1379–1391.CrossRefGoogle Scholar
  9. 9.
    Gazda, J., Šlapak, E., Bugár, G., Horváth, D., Maksymyuk, T., & Jo, M. (2018). Unsupervised learning algorithm for intelligent coverage planning and performance optimization of multitier heterogeneous network. IEEE Access, 6, 39 807–39 819.CrossRefGoogle Scholar
  10. 10.
    Gutierrez-Estevez, D. M., Gramaglia, M., De Domenico, A., Dandachi, G., Khatibi, S., Tsolkas, D., et al. (2019). Artificial intelligence for elastic management and orchestration of 5G networks. IEEE Wireless Communications, 26(5),134–141.CrossRefGoogle Scholar
  11. 11.
    Wang, D., Song, B., Chen, D., & Du, X. (2019). Intelligent cognitive radio in 5G: AI-based hierarchical cognitive cellular networks. IEEE Wireless Communications, 26(3), 54–61.CrossRefGoogle Scholar
  12. 12.
    Zhang, H., Ren, Y., Chen, K.-C., Hanzo, L., et al. (2019). Thirty years of machine learning: The road to pareto-optimal next-generation wireless networks. arXiv preprint arXiv:1902.01946.
  13. 13.
    Maksymyuk, T., Dumych, S., Brych, M., Satria, D., & Jo, M. (2017). An IoT based monitoring framework for software defined 5G mobile networks. In Proceedings of the 11th international conference on ubiquitous information management and communication (p. 105). ACM.Google Scholar
  14. 14.
    Heath, R. W., Kountouris, M., & Bai, T. (2013). Modeling heterogeneous network interference using Poisson point processes. IEEE Transactions on Signal Processing, 61(16), 4114–4126.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Peng, K., Leung, V. C., & Huang, Q. (2018). Clustering approach based on mini batch K-means for intrusion detection system over big data. IEEE Access, 6, 11 897–11 906.CrossRefGoogle Scholar
  16. 16.
    Kriegel, H.-P., Schubert, E., & Zimek, A. (2017). The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowledge and Information Systems, 52(2), 341–378.CrossRefGoogle Scholar
  17. 17.
    Sculley, D. (2010). Web-scale K-means clustering. In Proceedings of the 19th international conference on World wide web (pp. 1177–1178). ACM.Google Scholar
  18. 18.
    Feizollah, A., Anuar, N. B., Salleh, R., & Amalina, F. (2014). Comparative study of K-means and mini batch K-means clustering algorithms in Android malware detection using network traffic analysis. In International Symposium on Biometrics and Security Technologies (ISBAST) (pp. 193–197). IEEE.Google Scholar
  19. 19.
    Dhillon, H. S., Ganti, R. K., & Andrews, J. G. (2011). A tractable framework for coverage and outage in heterogeneous cellular networks. In Information Theory and Applications Workshop (pp. 1–6). IEEE.Google Scholar
  20. 20.
    Alouini, M.-S., & Goldsmith, A. J. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066.CrossRefGoogle Scholar
  21. 21.
    Jain, R., Durresi, A., & Babic, G. (1999). Throughput fairness index: An explanation.Google Scholar
  22. 22.
    3GPP, “Small cell enhancements for E-UTRA and E-UTRAN—Physical layer aspects,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.872, 12 2013, version 12.1.0. http://www.3gpp.org/-DynaReport/-36872.htm.
  23. 23.
    Mingoti, S. A., & Lima, J. O. (2006). Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174(3), 1742–1759.CrossRefGoogle Scholar
  24. 24.
    Sofi, I. B., & Gupta, A. (2018). A survey on energy efficient 5G green network with a planned multi-tier architecture. Journal of Network and Computer Applications, 118, 1–28.CrossRefGoogle Scholar
  25. 25.
    Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., et al. (2014). Network densification: The dominant theme for wireless evolution into 5G. IEEE Communications Magazine, 52(2), 82–89.CrossRefGoogle Scholar
  26. 26.
    Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.CrossRefGoogle Scholar
  27. 27.
    Maksymyuk, T., Kyryk, M., & Jo, M. (2016). Comprehensive spectrum management for heterogeneous networks in LTE-U. IEEE Wireless Communications, 23(6), 8–15.CrossRefGoogle Scholar
  28. 28.
    Araújo, D. C., Maksymyuk, T., de Almeida, A. L., Maciel, T., Mota, J. C., & Jo, M. (2016). Massive MIMO: Survey and future research topics. IET Communications, 10(15), 1938–1946.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of TelecommunicationsLviv Polytechnic National UniversityLvivUkraine
  2. 2.Department of Computers and InformaticsTechnical University of KošiceKosiceSlovakia
  3. 3.Center of Interdisciplinary Biosciences, Technology and Innovation ParkP. J. Šafárik UniversityKosiceSlovakia

Personalised recommendations