Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Genetic algorithm based adaptive offloading for improving IoT device communication efficiency

  • 89 Accesses

Abstract

Improving the communication of Internet of Things (IoT) network is a challenging task as it connects a wide-range of heterogeneous mobile devices. With an extended support from cloud network, the mobile IoT devices demand flexibility and scalability in communication. Increase in density of communicating devices and user request, traffic handling and delay-less service are unenviable. This manuscript introduces genetic algorithm based adaptive offloading (GA-OA) for effective traffic handling in IoT-infrastructure-cloud environment. The process of offloading is designed to mitigate unnecessary delays in request process and to improve the success rate of the IoT requests. The fitness process of GA is distributed among the gateways and infrastructure to handle requests satisfying different communication metrics. The process of GA balances between the optimal and sub-optimal solutions generated to improve the rate of request response. Experimental results prove the consistency of the proposed GA-OA by improving request success ratio, achieving lesser complexity, delay and processing time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials, 17(4), 2347–2376.

  2. 2.

    Deng, S., Huang, L., Wu, H., Tan, W., Taheri, J., Zomaya, A. Y., et al. (2016). Toward mobile service computing: opportunities and challenges. IEEE Cloud Computing, 3(4), 32–41.

  3. 3.

    Ning, H., & Hu, S. (2012). Technology classification, industry, and education for Future Internet of Things. International Journal of Communication Systems, 25(9), 1230–1241.

  4. 4.

    Haw, R., Alarm, M., & Hong, C. (2014). A context-aware content delivery framework for QoS in mobile cloud. In Proceedings of IEEE NOMS (pp. 1–6).

  5. 5.

    Munoz, R., Vilalta, R., Yoshikane, N., Casellas, R., Martinez, R., Tsuritani, T., et al. (2018). Integration of IoT, transport SDN, and edge/cloud computing for dynamic distribution of IoT analytics and efficient use of network resources. Journal of Lightwave Technology, 36(7), 1420–1428.

  6. 6.

    Lin, J.-W., Chen, C.-H., & Chang, J. (2013). Qos-aware data replication for data-intensive applications in cloud computing systems. IEEE Transactions on Cloud Computing, 1(1), 101–115.

  7. 7.

    Deng, Y., Chen, Z., Zhang, D., & Zhao, M. (2018). Workload scheduling toward worst-case delay and optimal utility for single-hop Fog-IoT architecture. IET Communications, 12(17), 2164–2173.

  8. 8.

    Mubeen, S., Nikolaidis, P., Didic, A., Pei-Breivold, H., Sandstrom, K., & Behnam, M. (2017). Delay mitigation in offloaded cloud controllers in industrial IoT. IEEE Access, 5, 4418–4430.

  9. 9.

    Yousefpour, A., Ishigaki, G., Gour, R., & Jue, J. P. (2018). On reducing IoT service delay via fog offloading. IEEE Internet of Things Journal, 5(2), 998–1010.

  10. 10.

    Shah-Mansouri, H., & Wong, V. W. S. (2018). Hierarchical fog-cloud computing for IoT systems: A computation offloading game. IEEE Internet of Things Journal, 5(4), 3246–3257.

  11. 11.

    Guo, H., Liu, J., & Qin, H. (2018). Collaborative mobile edge computation offloading for IoT over fiber-wireless networks. IEEE Network, 32(1), 66–71.

  12. 12.

    Guo, H., Liu, J., Zhang, J., Sun, W., & Kato, N. (2018). Mobile-edge computation offloading for ultradense IoT networks. IEEE Internet of Things Journal, 5(6), 4977–4988.

  13. 13.

    Dao, N.-N., Vu, D.-N., Na, W., Kim, J., & Cho, S. (2018). SGCO: Stabilized green crosshaul orchestration for dense IoT offloading services. IEEE Journal on Selected Areas in Communications, 36(11), 2538–2548.

  14. 14.

    Lyu, X., Tian, H., Jiang, L., Vinel, A., Maharjan, S., Gjessing, S., et al. (2018). Selective offloading in mobile edge computing for the green Internet of Things. IEEE Network, 32(1), 54–60.

  15. 15.

    Lee, H.-S., & Lee, J.-W. (2018). Task offloading in heterogeneous mobile cloud computing: Modeling, analysis, and cloudlet deployment. IEEE Access, 6, 14908–14925.

  16. 16.

    Zhang, C., Zhao, H., & Deng, S. (2018). A density-based offloading strategy for IoT devices in edge computing systems. IEEE Access, 6, 73520–73530.

  17. 17.

    Hasan, R., Hossain, M., & Khan, R. (2018). Aura: An incentive-driven ad-hoc IoT cloud framework for proximal mobile computation offloading. Future Generation Computer Systems, 86, 821–835.

  18. 18.

    Sharafeddine, S., & Farhat, O. (2018). A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading. Ad Hoc Networks, 77, 42–53.

  19. 19.

    Lee, D., & Lee, H. (2018). IoT service classification and clustering for integration of IoT service platforms. The Journal of Supercomputing, 74(12), 6859–6875.

  20. 20.

    Elbamby, M. S., Bennis, M., & Saad, W. (2017). Proactive edge computing in latency-constrained fog networks. In 2017 European conference on networks and communications (EuCNC).

  21. 21.

    Kim, S., & Kim, D.-Y. (2017). Efficient data-forwarding method in delay-tolerant P2P networking for IoT services. Peer-to-Peer Networking and Applications, 11(6), 1176–1185.

  22. 22.

    Kim, H.-Y. (2017). A load balancing scheme with Loadbot in IoT networks. The Journal of Supercomputing, 74(3), 1215–1226.

Download references

Author information

Correspondence to Azham Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Manikanthan, S.V., Padmapriya, T. et al. Genetic algorithm based adaptive offloading for improving IoT device communication efficiency. Wireless Netw (2019). https://doi.org/10.1007/s11276-019-02121-4

Download citation

Keywords

  • Fitness function
  • Genetic algorithm
  • IoT
  • Request processing
  • Traffic offloading