Advertisement

Wireless Networks

, Volume 25, Issue 8, pp 5099–5111 | Cite as

On the estimation of primary user activity statistics for long and short time scale models in cognitive radio

  • Dhaval K. Patel
  • Brijesh SoniEmail author
  • Miguel López-Benítez
Article

Abstract

Dynamic Spectrum Access (DSA)/Cognitive Radio (CR) systems access the channel in an opportunistic, non-interfering manner with the primary network. DSA/CR systems utilize spectrum sensing techniques to sense the availability of Primary user (PU). CR users can benefit from the knowledge of PU activity statistics. In this work, comprehensive analysis of estimation of distribution of PU idle and busy periods is carried out using Generalized Pareto and Pareto distributions for long and short time scale models respectively and closed form expression is derived. Moreover, the impact of sensing periods on the accuracy of estimated PU idle/busy periods is studied. Furthermore, the error in proposed estimation of distribution of PU idle and busy periods is quantified using the Kolmogorov–Smirnov test. From this study we conclude that the proposed model is better fit for the real scenarios eliminating practical limitations. Mathematical analysis is substantiated with the simulation results.

Keywords

Dynamic spectrum access Cognitive radio Spectrum sensing Generalized Pareto distribution Primary user activity statistics 

Notes

Acknowledgements

This work is supported by Department of Science and Technology (DST)-UKIERI Programme under the Grant Ref. DST/INT/UK/P-150/2016. The authors would like to thank School of Engineering and Applied Science, Ahmedabad University and the University of Liverpool, UK for the infrastructural support.

References

  1. 1.
    Lundén, J., Koivunen, V., & Poor, H. V. (2015). Spectrum exploration and exploitation for cognitive radio: Recent advances. IEEE Signal Processing Magazine, 32(3), 123–140.CrossRefGoogle Scholar
  2. 2.
    Cardenas-juarez, M., Diaz-ibarra, M. A., Pineda-rico, U., Arce, A., & Stevens-navarro, E. (2016). On Spectrum occupancy measurements at 2. 4 GHz ISM Band for cognitive radio applications. In International Conference on Electronics, Communications and Computers (pp. 25–31).Google Scholar
  3. 3.
    Eze, J., Zhang, S., Liu, E., & Eze, E. (Sep. 2017). Cognitive radio technology assisted vehicular ad-hoc networks (VANETS): Current status, challenges, and research trends. In 2017 23rd International Conference on Automation and Computing (ICAC) (pp. 1–6).Google Scholar
  4. 4.
    Liang, Y. C., Chen, K. C., Li, G. Y., & Mähönen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.CrossRefGoogle Scholar
  5. 5.
    Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of IEEE, 55(4), 523–531.CrossRefGoogle Scholar
  6. 6.
    Chen, Y., & Oh, H. S. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys and Tutorials, 18(1), 848–859.CrossRefGoogle Scholar
  7. 7.
    Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.CrossRefGoogle Scholar
  8. 8.
    Ahmadi, H., Chew, Y. H., Tang, P. K., & Nijsure, Y. A. (Sep. 2011). Predictive opportunistic spectrum access using learning based hidden markov models. In Proceedings of PIMRC, (pp. 401–405).Google Scholar
  9. 9.
    Ahmadi, H., Macaluso, I., & DaSilva, L. A. (June 2013). The effect of the spectrum opportunities diversity on opportunistic access. In IEEE International Conference on Communications (ICC) (pp. 2829–2834).Google Scholar
  10. 10.
    Macaluso, I., Ahmadi, H., & DaSilva, L. A. (2015). Fungible orthogonal channel sets for multi-user exploitation of spectrum. IEEE Transactions on Wireless Communications, 14(4), 2281–2293.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., & Tewfik, A. (June 2012). Hyperexponential approximation of channel idle time distribution with implication to secondary transmission strategy. In Proceedings of IEEE ICC (pp. 1800–1804).Google Scholar
  12. 12.
    Liu, C., Pawelczak, P., & Cabric, D. (2014). Primary user traffic classification in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 32(11), 2237–2251.CrossRefGoogle Scholar
  13. 13.
    Shabara, Y., Zahran, A. H., & ElBatt, T. (June 2015). Efficient spectrum access strategies for cognitive networks with general idle time statistics. In Proceedings of IEEE ICC (pp. 7743–7749).Google Scholar
  14. 14.
    Agarwal, A., Dubey, S., Khan, M. A., Gangopadhyay, R., & Debnath, S. (June 2016). Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access. In Proceedings SPCOM (pp. 1–5).Google Scholar
  15. 15.
    Al-Tahmeesschi, A., Lopez-Benitez, M., Lehtomaki, J., & Umebayashi, K. (March 2017). Investigating the estimation of primary occupancy patterns under imperfect spectrum sensing. In Proceedings of IEEE WCNC (pp. 1–6).Google Scholar
  16. 16.
    Al-Tahmeesschi, A., López-Benítez, M., Umebayashi, K., & Lehtomäki, J. (Oct 2017). Analytical study on the estimation of primary activity distribution based on spectrum sensing. In Proceedings of IEEE PIMRC (pp. 1–5).Google Scholar
  17. 17.
    Al-Tahmeesschi, A., López-Benítez, M., Lehtomäki, J., & Umebayashi, K. (April 2018). Accurate estimation of primary user traffic based on periodic spectrum sensing. In Proceedings of IEEE WCNC (pp. 1–6).Google Scholar
  18. 18.
    Al-Tahmeesschi, A, López-Benítez, M., Lehtomäki, J., Umebayashi, K. (April 2018). Improving primary statistics prediction under imperfect spectrum sensing. In Proceedings of IEEE WCNC (pp. 1–6).Google Scholar
  19. 19.
    López-Benítez, M., & Casadevall, F. (2013). Time-dimension models of spectrum usage for the analysis, design, and simulation of cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(5), 2091–2104.CrossRefGoogle Scholar
  20. 20.
    Larsen, R. J., Marx, M. L., et al. (1986). An introduction to mathematical statistics and its applications (Vol. 2). Englewood Cliffs, NJ: Prentice-Hall.zbMATHGoogle Scholar
  21. 21.
    López-Benítez, M., & Casadevall, F. (June 2011). Modeling and simulation of time-correlation properties of spectrum use in cognitive radio. In 6th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM) (pp. 326–330).Google Scholar
  22. 22.
    Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, Vol. 2 of wiley series in probability and mathematical statistics: Applied probability and statistics.Google Scholar
  23. 23.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes 3rd edition: The art of scientific computing (Vol. 3). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  24. 24.
    Zwillinger, D. (2014). Table of integrals, series, and products (8th ed.). Amsterdam: Elsevier.Google Scholar
  25. 25.
    W. R. Inc. (2018) Mathematica online, Version 11.3, Champaign, ILGoogle Scholar
  26. 26.
    López-Benítez, M., Casadevall, F., Umbert, A., Pérez-Romero, J., Hachemani, R., Palicot, J., & Moy, C. (2009). Spectral occupation measurements and blind standard recognition sensor for cognitive radio networks. In Proceedings IEEE CROWNCOM (pp. 1–9).Google Scholar
  27. 27.
    Chu, X., Lopez-Perez, D., Yang, Y., & Gunnarsson, F. (2013). Heterogeneous Cellular Networks: Theory, Simulation and Deployment, Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering and Applied ScienceAhmedabad UniversityAhmedabadIndia
  2. 2.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
  3. 3.ARIES Research CentreAntonio de Nebrija UniversityMadridSpain

Personalised recommendations