Advertisement

\(E^{2} SR^{2}\): An acknowledgement-based mobile sink routing protocol with rechargeable sensors for wireless sensor networks

  • Bharat BhushanEmail author
  • Gadadhar Sahoo
Article
  • 22 Downloads

Abstract

The advances in hardware manufacturing technologies and wireless communications enabled the evolution of tiny, multi-functional, low-power and resource constrained sensor nodes (SNs) for wireless sensor networks (WSNs). SNs located in sinks vicinity, deplete their batteries quickly because of concentrated data traffic near the sink, leaving the data reporting wrecked and disrupted. In order to mitigate this problem, mobile sinks are introduced that provide uniform energy consumption and load balanced data delivery through the sensor network. However, advertising the mobile sinks position information brings forth additional overhead in terms of energy wastage. Recently, an energy-efficient distributed mobile sink routing protocol named ring routing has been proposed aiming to mitigate the introduced overhead. In this present work, we propose an Energy Efficient Secured Ring Routing (\(E^{2} SR^{2}\)) protocol which is an enhancement of existing ring routing protocol [62] that considers rechargeable sensors to be deployed in the sensing region and employs Maximum Capacity Path (MCP), a dynamic load balanced routing scheme for load balancing and prolonging the networks lifetime. Furthermore, we use 2ACK scheme that serves as an efficient mechanism for detecting the routing misbehaviour and simultaneously enhance the security. Finally, the proposed protocol was simulated by varying the sink speed for similar node deployments and the results obtained confirm that the proposed \(E^{2} SR^{2}\) achieves improved performance than the existing protocols such as LBDD (Line Based Data Dissemination), rail road and ring routing.

Keywords

Security Attacks Vulnerabilities LBDD Rail road Ring routing Mobile sinks Data dissemination 

Notes

References

  1. 1.
    Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2016). Wireless sensor network virtualization: A survey. IEEE Communications Surveys & Tutorials, 18(1), 553–576.  https://doi.org/10.1109/comst.2015.2412971.Google Scholar
  2. 2.
    Mehrabi, A., & Kim, K. (2017). General framework for network throughput maximization in sink-based energy harvesting wireless sensor networks. IEEE Transactions on Mobile Computing, 16(7), 1881–1896.  https://doi.org/10.1109/tmc.2016.2607716.Google Scholar
  3. 3.
    Kumar, N., & Dash, D. (2018). Mobile data sink-based time-constrained data collection from mobile sensors: A heuristic approach. IET Wireless Sensor Systems, 8(3), 129–135.  https://doi.org/10.1049/iet-wss.2017.0106.Google Scholar
  4. 4.
    Khan, A. W., Bangash, J. I., Ahmed, A., & Abdullah, A. H. (2017). QDVGDD: Query-driven virtual grid based data dissemination for wireless sensor networks using single mobile sink. Wireless Networks.  https://doi.org/10.1007/s11276-017-1552-8.Google Scholar
  5. 5.
    Wen, W., Zhao, S., Shang, C., & Chang, C. (2018). EAPC: Energy-aware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sensors Journal, 18(2), 890–901.  https://doi.org/10.1109/jsen.2017.2773119.Google Scholar
  6. 6.
    Zhou, Z., Du, C., Shu, L., Hancke, G., Niu, J., & Ning, H. (2016). An energy-balanced heuristic for mobile sink scheduling in hybrid WSNs. IEEE Transactions on Industrial Informatics, 12(1), 28–40.  https://doi.org/10.1109/tii.2015.2489160.Google Scholar
  7. 7.
    Dobslaw, F., Zhang, T., & Gidlund, M. (2016). End-to-end reliability-aware scheduling for wireless sensor networks. IEEE Transactions on Industrial Informatics, 12(2), 758–767.  https://doi.org/10.1109/tii.2014.2382335.Google Scholar
  8. 8.
    Francesco, M. D., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements. ACM Transactions on Sensor Networks, 8(1), 1–31.  https://doi.org/10.1145/1993042.1993049.Google Scholar
  9. 9.
    Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In 2010 IEEE global telecommunications conference GLOBECOM 2010.  https://doi.org/10.1109/glocom.2010.5683095.
  10. 10.
    Rao, J., & Biswas, S. (2010). Network-assisted sink navigation for distributed data gathering: Stability and delay-energy trade-offs. Computer Communications, 33(2), 160–175.  https://doi.org/10.1016/j.comcom.2009.08.009.Google Scholar
  11. 11.
    Grammalidis, N., Cetin, E., Dimitropoulos, K., Tsalakanidou, F., Kose, K., Gunay, O., et al. (2011). A multisensor network for the protection of cultural heritage. In 19th European signal processing conference (EUSIPCO2011), special session on signal processing for disaster management and prevention, 2011.Google Scholar
  12. 12.
    Yun, Y., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9(9), 1308–1318.  https://doi.org/10.1109/tmc.2010.76.Google Scholar
  13. 13.
    He, S., Chen, J., Jiang, F., Yau, D. K., Xing, G., & Sun, Y. (2013). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.  https://doi.org/10.1109/tmc.2012.161.Google Scholar
  14. 14.
    Liu, R., Fan, K., Zheng, Z., & Sinha, P. (2011). Perpetual and fair data collection for environmental energy harvesting sensor networks. IEEE/ACM Transactions on Networking, 19(4), 947–960.  https://doi.org/10.1109/tnet.2010.2091280.Google Scholar
  15. 15.
    Mao, Z., Koksal, C. E., & Shroff, N. B. (2012). Near optimal power and rate control of multi-hop sensor networks with energy replenishment: Basic limitations with finite energy and data storage. IEEE Transactions on Automatic Control, 57(4), 815–829.  https://doi.org/10.1109/tac.2011.2166310.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ren, X., Liang, W., & Xu, W. (2013). Use of a mobile sink for maximizing data collection in energy harvesting sensor networks. In 2013 42nd International conference on parallel processing.  https://doi.org/10.1109/icpp.2013.53.
  17. 17.
    Wu, J., Ota, K., Dong, M., & Li, C. (2016). A hierarchical security framework for defending against sophisticated attacks on wireless sensor networks in smart cities. IEEE Access, 4, 416–424.  https://doi.org/10.1109/access.2016.2517321.Google Scholar
  18. 18.
    Pu, C., & Lim, S. (2018). A light-weight countermeasure to forwarding misbehavior in wireless sensor networks: Design, analysis, and evaluation. IEEE Systems Journal, 12(1), 834–842.  https://doi.org/10.1109/jsyst.2016.2535730.Google Scholar
  19. 19.
    Hsueh, C., Wen, C., & Ouyang, Y. (2015). A secure scheme against power exhausting attacks in hierarchical wireless sensor networks. IEEE Sensors Journal, 15(6), 3590–3602.  https://doi.org/10.1109/jsen.2015.2395442.Google Scholar
  20. 20.
    Tan, L., & Tang, S. (2017). Energy harvesting wireless sensor node with temporal death: Novel models and analyses. IEEE/ACM Transactions on Networking, 25(2), 896–909.  https://doi.org/10.1109/tnet.2016.2607229.MathSciNetGoogle Scholar
  21. 21.
    Cao, B., Ge, Y., Kim, C. W., Feng, G., Tan, H. P., & Li, Y. (2013). An experimental study for inter-user interference mitigation in wireless body sensor networks. IEEE Sensors Journal, 13(10), 3585–3595.  https://doi.org/10.1109/jsen.2013.2267053.Google Scholar
  22. 22.
    Li, Y., Huang, Q., & Huang, W. (2011). A cooperative retransmission strategy for error-prone wireless networks. In 2011 Eighth international conference on wireless and optical communications networks.  https://doi.org/10.1109/wocn.2011.5872934.
  23. 23.
    Wang, L., Zhao, W., Li, Y., Qu, Y., Liu, Z., & Chen, Q. (2008). Sleep-supported and cone-based topology control method for wireless sensor networks. In 2008 IEEE international conference on networking, sensing and control.  https://doi.org/10.1109/icnsc.2008.4525447.
  24. 24.
    Sharma, V., You, I., Pau, G., Collotta, M., Lim, J., & Kim, J. (2018). LoRaWAN-based energy-efficient surveillance by Drones for intelligent transportation systems. Energies, 11(3), 573.  https://doi.org/10.3390/en11030573.Google Scholar
  25. 25.
    Liu, X., Zhao, H., Yang, X., & Li, X. (2013). SinkTrail: A proactive data reporting protocol for wireless sensor networks. IEEE Transactions on Computers, 62(1), 151–162.  https://doi.org/10.1109/tc.2011.207.MathSciNetzbMATHGoogle Scholar
  26. 26.
    Hawbani, A., Wang, X., Kuhlani, H., Karmoshi, S., Ghoul, R., Sharabi, Y., et al. (2017). Sink-oriented tree based data dissemination protocol for mobile sinks wireless sensor networks. Wireless Networks, 24(7), 2723–2734.  https://doi.org/10.1007/s11276-017-1497-y.Google Scholar
  27. 27.
    Luo, H., Ye, F., Cheng, J., Lu, S., & Zhang, L. (2005). TTDD: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Networks, 11(1–2), 161–175.  https://doi.org/10.1007/s11276-004-4753-x.Google Scholar
  28. 28.
    Kweon, K., Ghim, H., Hong, J., & Yoon, H. (2009). Grid-based energy-efficient routing from multiple sources to multiple mobile sinks in wireless sensor networks. In 2009 4th International symposium on wireless pervasive computing.  https://doi.org/10.1109/iswpc.2009.4800585.
  29. 29.
    Erman, A. T., Dilo, A., & Havinga, P. (2012). A virtual infrastructure based on honeycomb tessellation for data dissemination in multi-sink mobile wireless sensor networks. EURASIP Journal on Wireless Communications and Networking.  https://doi.org/10.1186/1687-1499-2012-17.Google Scholar
  30. 30.
    Lin, C., Chou, P., & Chou, C. (2006). HCDD. In Proceeding of the 2006 international conference on communications and mobile computing—IWCMC 06.  https://doi.org/10.1145/1143549.1143787.
  31. 31.
    Lu, J., & Valois, F. (2007). On the data dissemination in WSNs. In Third IEEE international conference on wireless and mobile computing, networking and communications (WiMob 2007).  https://doi.org/10.1109/wimob.2007.4390852.
  32. 32.
    Li, Y., Xiong, S., Chen, Q., & Fang, F. (2007). Grid-based directed diffusion for wireless sensor networks. In 2007 Second international conference on communications and networking in China.  https://doi.org/10.1109/chinacom.2007.4469508.
  33. 33.
    Xing, G., Wang, T., Xie, Z., & Jia, W. (2007). Rendezvous planning in mobility-assisted wireless sensor networks. In 28th IEEE international real-time systems symposium (RTSS 2007).  https://doi.org/10.1109/rtss.2007.44.
  34. 34.
    Vecchio, M., Viana, A. C., Ziviani, A., & Friedman, R. (2010). DEEP: Density-based proactive data dissemination protocol for wireless sensor networks with uncontrolled sink mobility. Computer Communications, 33(8), 929–939.  https://doi.org/10.1016/j.comcom.2010.01.003.Google Scholar
  35. 35.
    Mo, H., Lee, E., Park, S., & Kim, S. (2013). Virtual line-based data dissemination for mobile sink groups in wireless sensor networks. IEEE Communications Letters, 17(9), 1864–1867.  https://doi.org/10.1109/lcomm.2013.072913.131354.Google Scholar
  36. 36.
    Hu, L., Li, Y., Chen, Q., Liu, J., & Long, K. (2007). A new energy-aware routing protocol for wireless sensor networks. In 2007 International conference on wireless communications, networking and mobile computing.  https://doi.org/10.1109/wicom.2007.609.
  37. 37.
    Collotta, M., Bello, L. L., Toscano, E., & Mirabella, O. (2010). Dynamic load balancing techniques for flexible wireless industrial networks. In IECON 2010—36th annual conference on IEEE Industrial Electronics Society.  https://doi.org/10.1109/iecon.2010.5675489.
  38. 38.
    Hu, J., Jin, Y., & Dou, L. (2008). A time-based cluster-head selection algorithm for LEACH. In IEEE Symposium on computers and communications, 2008, pp. 1172–1176.Google Scholar
  39. 39.
    Li, Y., Yu, N., Zhang, W., Zhao, W., You, X., & Daneshmand, M. (2011). Enhancing the performance of LEACH protocol in wireless sensor networks. In 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS).  https://doi.org/10.1109/infcomw.2011.5928813.
  40. 40.
    Collotta, M., Pau, G., Salerno, V. M., & Scata, G. (2012). A distributed load balancing approach for industrial IEEE 802.11 wireless networks. In Proceedings of 2012 IEEE 17th international conference on emerging technologies & factory automation (ETFA 2012).  https://doi.org/10.1109/etfa.2012.6489583.
  41. 41.
    Li, Y., Zhang, Z., Wang, C., Zhao, W., & Chen, H. (2013). Blind cooperative communications for multihop ad hoc wireless networks. IEEE Transactions on Vehicular Technology, 62(7), 3110–3122.  https://doi.org/10.1109/tvt.2013.2256475.Google Scholar
  42. 42.
    Li, Y., Zhu, X., Liao, C., Wang, C., & Cao, B. (2015). Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks. IEEE Transactions on Vehicular Technology, 64(6), 2551–2560.  https://doi.org/10.1109/tvt.2014.2342236.Google Scholar
  43. 43.
    Collotta, M., Scata, G., Tirrito, S., Ferrero, R., & Rebaudengo, M. (2014). A parallel fuzzy scheme to improve power consumption management in Wireless Sensor Networks. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).  https://doi.org/10.1109/etfa.2014.7005363.
  44. 44.
    Collotta, M., & Pau, G. (2015). A novel energy management approach for smart homes using bluetooth low energy. IEEE Journal on Selected Areas in Communications, 33(12), 2988–2996.  https://doi.org/10.1109/jsac.2015.2481203.Google Scholar
  45. 45.
    Li, Y., Li, Y., Cao, B., Daneshmand, M., & Zhang, W. (2015). Cooperative spectrum sharing with energy-save in cognitive radio networks. In 2015 IEEE global communications conference (GLOBECOM).  https://doi.org/10.1109/glocom.2015.7417201.
  46. 46.
    Collotta, M., Pau, G., & Bobovich, A. V. (2017). A fuzzy data fusion solution to enhance the QoS and the energy consumption in Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2017, 1–10.  https://doi.org/10.1155/2017/3418284.Google Scholar
  47. 47.
    Chakrabarti, A., Sabharwal, A., & Aazhang, B. (2006). Communication power optimization in a sensor network with a path-constrained mobile observer. ACM Transactions on Sensor Networks (TOSN), 2(3), 297–324.Google Scholar
  48. 48.
    Gao, S., Zhang, H., & Das, S. K. (2011). Efficient data collection in wireless sensor networks with path-constrained mobile sinks. IEEE Transactions on Mobile Computing, 10(4), 592–608.  https://doi.org/10.1109/tmc.2010.193.Google Scholar
  49. 49.
    Guo, S., & Yang, Y. (2012). A distributed optimal framework for mobile data gathering with concurrent data uploading in wireless sensor networks. In Proceedings of IEEE INFOCOM (pp. 1305–1313). IEEE.Google Scholar
  50. 50.
    Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2014). A simple asymptotically optimal energy allocation and routing scheme in rechargeable sensor networks. IEEE/ACM Transactions on Networking, 22(4), 1325–1336.Google Scholar
  51. 51.
    Guo, S., Wang, C., & Yang, Y. (2014). Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 99(1), 1.Google Scholar
  52. 52.
    Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishmentanddatagatheringinwirelessrechargeablesensornetworks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.Google Scholar
  53. 53.
    Castagnetti, A., Pegatoquet, A., Le, T. N., & Auguin, M. (2014). A joint duty-cycle and transmission power management for energy harvesting WSN. IEEE Transactions on Industrial Informatics, 10(2), 928–936.  https://doi.org/10.1109/tii.2014.2306327.Google Scholar
  54. 54.
    Anisi, M. H., Abdul-Salaam, G., Idris, M. Y., Wahab, A. W., & Ahmedy, I. (2015). Energy harvesting and battery power based routing in wireless sensor networks. Wireless Networks, 23(1), 249–266.  https://doi.org/10.1007/s11276-015-1150-6.Google Scholar
  55. 55.
    Lu, T., Liu, G., & Chang, S. (2016). Energy-efficient data sensing and routing in unreliable energy-harvesting wireless sensor network. Wireless Networks, 24(2), 611–625.  https://doi.org/10.1007/s11276-016-1360-6.Google Scholar
  56. 56.
    Shafieirad, H., Adve, R. S., & Shahbazpanahi, S. (2018). Max-SNR opportunistic routing for large-scale energy harvesting sensor networks. IEEE Transactions on Green Communications and Networking, 2(2), 506–516.  https://doi.org/10.1109/tgcn.2018.2789783.Google Scholar
  57. 57.
    Bengheni, A., Didi, F., & Bambrik, I. (2018). EEM-EHWSN: Enhanced energy management scheme in energy harvesting wireless sensor networks. Wireless Networks.  https://doi.org/10.1007/s11276-018-1701-8.Google Scholar
  58. 58.
    Ren, X., Liang, W., & Xu, W. (2013). Use of a mobile sink for maximizing data collection in energy harvesting sensor networks. In Proceedings of ICPP (pp. 439–448). IEEE.Google Scholar
  59. 59.
    Ren, X., Xu, W., & Liang, W. (2014). Data collection maximization in renewable sensor networks via time-slot scheduling. IEEE Transactions on Computing, 64, 1.MathSciNetGoogle Scholar
  60. 60.
    Hamida, E. B., & Chelius, G. (2008). A line-based data dissemination protocol for wireless sensor networks with mobile sink. In 2008 IEEE international conference on communications.  https://doi.org/10.1109/icc.2008.420.
  61. 61.
    Shin, J., Kim, J., Park, K., & Park, D. (2005). Railroad. In Proceedings of the 2nd ACM international workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks—PE-WASUN 05.  https://doi.org/10.1145/1089803.1089982.
  62. 62.
    Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2015). Ring routing: An energy-efficient routing protocol for Wireless Sensor Networks with a mobile sink. IEEE Transactions on Mobile Computing, 14(9), 1947–1960.  https://doi.org/10.1109/tmc.2014.2366776.Google Scholar
  63. 63.
    Niculescu, D. (2004). Positioning in ad hoc sensor networks. IEEE Network, 18(4), 24–29.  https://doi.org/10.1109/mnet.2004.1316758.Google Scholar
  64. 64.
    Gopakumar, A., & Jacob, L. (2008). Localization in wireless sensor networks using particle swarm optimization. In IET conference on wireless, mobile and multimedia networks.  https://doi.org/10.1049/cp:20080185.
  65. 65.
    Pham, T. N., & Yeo, C. K. (2016). Detecting colluding blackhole and greyhole attacks in delay tolerant networks. IEEE Transactions on Mobile Computing, 15(5), 1116–1129.  https://doi.org/10.1109/tmc.2015.2456895.Google Scholar
  66. 66.
    Chang, J., Tsou, P., Woungang, I., Chao, H., & Lai, C. (2015). Defending against collaborative attacks by malicious nodes in MANETs: A cooperative bait detection approach. IEEE Systems Journal, 9(1), 65–75.  https://doi.org/10.1109/jsyst.2013.2296197.Google Scholar
  67. 67.
    Schweitzer, N., Stulman, A., Margalit, R. D., & Shabtai, A. (2017). Contradiction based gray-hole attack minimization for ad-hoc networks. IEEE Transactions on Mobile Computing, 16(8), 2174–2183.  https://doi.org/10.1109/tmc.2016.2622707.Google Scholar
  68. 68.
    Pal, S., Sikdar, B., & Chow, J. H. (2018). An online mechanism for detection of gray-hole attacks on PMU data. IEEE Transactions on Smart Grid, 9(4), 2498–2507.  https://doi.org/10.1109/tsg.2016.2614327.Google Scholar
  69. 69.
    Chen, Y., Yang, J., Trappe, W., & Martin, R. P. (2010). Detecting and localizing identity-based attacks in Wireless and Sensor Networks. IEEE Transactions on Vehicular Technology, 59(5), 2418–2434.  https://doi.org/10.1109/tvt.2010.2044904.Google Scholar
  70. 70.
    Sun, C., Liu, J., Xu, X., & Ma, J. (2017). A privacy-preserving mutual authentication resisting DoS attacks in VANETs. IEEE Access, 5, 24012–24022.  https://doi.org/10.1109/access.2017.2768499.Google Scholar
  71. 71.
    Mehrabi, A., & Kim, K. (2016). Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink. IEEE Transactions on Mobile Computing, 15(3), 690–704.  https://doi.org/10.1109/tmc.2015.2424430.Google Scholar
  72. 72.
    Wang, C., Shih, J., Pan, B., & Wu, T. (2014). A network lifetime enhancement method for sink relocation and its analysis in Wireless Sensor Networks. IEEE Sensors Journal, 14(6), 1932–1943.  https://doi.org/10.1109/jsen.2014.2306429.Google Scholar
  73. 73.
    Vadivazhagu, P., & Selvam, P. (2015). Network lifetime enhancement method for sink relocation and packet drop detection in wireless sensor networks. In 2015 International conference on communications and signal processing (ICCSP).  https://doi.org/10.1109/iccsp.2015.7322534.
  74. 74.
    Liu, K., Deng, J., Varshney, P. K., & Balakrishnan, K. (2007). An acknowledgment-based approach for the detection of routing misbehavior in MANETs. IEEE Transactions on Mobile Computing, 6(5), 536–550.  https://doi.org/10.1109/tmc.2007.1036.Google Scholar
  75. 75.
    Shi, Y., & Hou, Y. T. (2012). Some fundamental results on base station movement problem for wireless sensor networks. IEEE/ACM Transactions on Networking, 20(4), 1054–1067.  https://doi.org/10.1109/tnet.2011.2171990.Google Scholar
  76. 76.
    Orihuela, L., Gomez-Estern, F., & Rubio, F. R. (2014). Scheduled communication in sensor networks. IEEE Transactions on Control Systems Technology, 22(2), 801–808.  https://doi.org/10.1109/tcst.2013.2262999.Google Scholar
  77. 77.
    Liu, J., Xiong, K., Fan, P., & Zhong, Z. (2017). RF energy harvesting wireless powered sensor networks for smart cities. IEEE Access, 5, 9348–9358.  https://doi.org/10.1109/access.2017.2703847.Google Scholar
  78. 78.
    Saha, S., Nandi, S., Verma, R., Sengupta, S., Singh, K., Sinha, V., et al. (2016). Design of efficient lightweight strategies to combat DoS attack in delay tolerant network routing. Wireless Networks, 24(1), 173–194.  https://doi.org/10.1007/s11276-016-1320-1.Google Scholar
  79. 79.
    Heydari, V., & Yoo, S. (2015). E2EACK: An end-to-end acknowledgment-based scheme against collusion black hole and slander attacks in MANETs. Wireless Networks, 22(7), 2259–2273.  https://doi.org/10.1007/s11276-015-1098-6.Google Scholar
  80. 80.
    Kumar, V. A., & Das, D. (2014). Data enriched SACK: A novel acknowledgement generation scheme for secure SCTP. IEEE Communications Letters, 18(12), 2109–2112.  https://doi.org/10.1109/lcomm.2014.2367109.Google Scholar
  81. 81.
    Pu, C., Lim, S., Chae, J., & Jung, B. (2017). Active detection in mitigating routing misbehavior for MANETs. Wireless Networks.  https://doi.org/10.1007/s11276-017-1621-z.Google Scholar
  82. 82.
    Anand, A., Aggarwal, H., & Rani, R. (2016). Partially distributed dynamic model for secure and reliable routing in mobile ad hoc networks. Journal of Communications and Networks, 18(6), 938–947.  https://doi.org/10.1109/jcn.2016.000128.Google Scholar
  83. 83.
    Yin, D., Shen, Y., & Liu, C. (2017). Attribute couplet attacks and privacy preservation in social networks. IEEE Access, 5, 25295–25305.  https://doi.org/10.1109/access.2017.2769090.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringBirla Institute of TechnologyMesraIndia

Personalised recommendations