3D geographical routing protocols in wireless ad hoc and sensor networks: an overview

  • Naveen Kumar GuptaEmail author
  • Rama Shankar Yadav
  • Rajendra Kumar Nagaria


Geographical routing is a prominent area of research in wireless networks where route establishment is based on known locations of wireless nodes. The location may be an exact physical location or virtual location. Many geographical routing protocols based on greedy and face routing approach have been designed for 2D networks, but these protocols may not be suitable in 3D environment like hill area, airborne networks, underground networks, underwater networks and so forth. The objective of this paper is to provide the research issues and challenges of geographical routing in the three-dimensional surface. These routing techniques suffer from many problems like energy efficiency, localization, mobility, load balancing, routing stretch, void node problems, etc. These issues have been addressed in the literature survey. In this paper, the recent research papers related to geographical routing have been discussed, but the main focus is on 3D geographic routing techniques, issues and challenges.


3D geographical routing Localization Routing stretch Virtual coordinates High-genus structure Sensor networks 



The authors would like to thank Visvesvaraya Ph.D. scheme, Digital India Corporation (formerly Media Lab Asia), India.


  1. 1.
    Misra, S., Zhang, I., & Misra, S. C. (2009). Guide to wireless ad hoc networks. Berlin: Springer.CrossRefGoogle Scholar
  2. 2.
    Gupta, N. K, Kumar, R., Gupta, A. K., & Srivastava, P. (2016). Ant pheromone evaluation models based gateway selection in MANET. In Innovations in bio-inspired computing and applications (pp. 297–311). Springer.Google Scholar
  3. 3.
    Cheng, X., Huang, X., & D.-Z, Du. (2013). Ad hoc wireless networking (Vol. 14). Berlin: Springer.zbMATHGoogle Scholar
  4. 4.
    Cadger, F., Curran, K., Santos, J., & Moffett, S. (2013). A survey of geographical routing in wireless ad-hoc networks. IEEE Communications Surveys Tutorials, 15(2), 621–653.CrossRefGoogle Scholar
  5. 5.
    Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.zbMATHCrossRefGoogle Scholar
  6. 6.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRefGoogle Scholar
  7. 7.
    Sahingoz, O. K. (2014). Networking models in flying ad-hoc networks (fanets): Concepts and challenges. Journal of Intelligent & Robotic Systems, 74(1–2), 513.CrossRefGoogle Scholar
  8. 8.
    Zhou, Y., Cheng, N., Lu, N., & Shen, X . S. (2015). Multi-UAV-aided networks: Aerial-ground cooperative vehicular networking architecture. IEEE Vehicular Technology Magazine, 10(4), 36–44.CrossRefGoogle Scholar
  9. 9.
    Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (fanets): A survey. Ad Hoc Networks, 11(3), 1254–1270.CrossRefGoogle Scholar
  10. 10.
    Felemban, E., Shaikh, F. K., Qureshi, U. M., Sheikh, A. A., & Qaisar, S. B. (2015). Underwater sensor network applications: A comprehensive survey. International Journal of Distributed Sensor Networks, 11(11), 896832.CrossRefGoogle Scholar
  11. 11.
    Melodia, T., Kulhandjian, H., Kuo, L.-C., & Demirors, E. (2013). Advances in underwater acoustic networking. In Basagni, S., Conti, M., Giordano, S., & Stojmenovic, I. (Eds.), Mobile Ad Hoc Networking: Cutting Edge Directions (pp. 804–852). New York, USA: Wiley. CrossRefGoogle Scholar
  12. 12.
    Sun, B., Zhu, D., & Yang, S. X. (2014). A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle. IEEE Transactions on Industrial Electronics, 61(7), 3682–3693.CrossRefGoogle Scholar
  13. 13.
    Bergman, E. (2012). Manned submersibles translating the ocean sciences for a global audience. In Oceans (pp. 1–5). IEEE.Google Scholar
  14. 14.
    Yuh, J., & Choi, H.-T. (2015). Unmanned underwater vehicles. Wiley Encyclopedia of Electrical and Electronics Engineering.Google Scholar
  15. 15.
    Akyildiz, I. F., Sun, Z., & Vuran, M. C. (2009). Signal propagation techniques for wireless underground communication networks. Physical Communication, 2(3), 167–183.CrossRefGoogle Scholar
  16. 16.
    Akyildiz, I. F., & Stuntebeck, E. P. (2006). Wireless underground sensor networks: Research challenges. Ad Hoc Networks, 4(6), 669–686.CrossRefGoogle Scholar
  17. 17.
    Silva, A. R., & Vuran, M. C. (2010). Development of a testbed for wireless underground sensor networks. EURASIP Journal on Wireless Communications and Networking, 2010(1), 620307.CrossRefGoogle Scholar
  18. 18.
    Huang, H., Yin, H., Luo, Y., Zhang, X., Min, G., & Fan, Q. (2016). Three-dimensional geographic routing in wireless mobile ad hoc and sensor networks. IEEE Network, 30(2), 82–90.CrossRefGoogle Scholar
  19. 19.
    Yadav, V., Mishra, M. K., Sngh, A., & Gore, M. (2009). Localization scheme for three dimensional wireless sensor networks using gps enabled mobile sensor nodes. International Journal of Next-Generation Networks (IJNGN), 1(1), 60–72.Google Scholar
  20. 20.
    Amundson, I., & Koutsoukos, X. D. (2009). A survey on localization for mobile wireless sensor networks. In Mobile entity localization and tracking in GPS-less environnments (pp. 235–254). Springer.Google Scholar
  21. 21.
    Zhou, J., Chen, Y., Leong, B., & Sundaramoorthy, P. S. (2010). Practical 3D geographic routing for wireless sensor networks. In Proceedings of the 8th ACM conference on embedded networked sensor systems (pp. 337–350). ACM.Google Scholar
  22. 22.
    Liu, B.-H., Pham, V.-T., Hou, B.-Y., & Chiu, S.-W. (2015). Virtual-coordinate-based delivery-guaranteed routing protocol in three-dimensional wireless sensor networks. Wireless Communications and Mobile Computing, 15(2), 215–227.Google Scholar
  23. 23.
    Wang, C., Jiang, H., Yu, T., & Lui, J. C. S. (2016). Slice: Enabling greedy routing in high genus 3-D WSNs with general topologies. IEEE/ACM Transactions on Networking, 24(4), 2472–2484.CrossRefGoogle Scholar
  24. 24.
    Cai, K., Yin, Z., Jiang, H., Tan, G., Guo, P., Wang, C., et al. (2015). Onionmap: A scalable geometric addressing and routing scheme for 3D sensor networks. IEEE Transactions on Wireless Communications, 14(1), 57–68.CrossRefGoogle Scholar
  25. 25.
    Ko, Y.-B., & Vaidya, N. H. (2000). Location-aided routing (LAR) in mobile ad hoc networks. Wireless Networks, 6(4), 307–321.zbMATHCrossRefGoogle Scholar
  26. 26.
    Kuhn, F., Wattenhofer, R., & Zollinger, A. (2008). An algorithmic approach to geographic routing in ad hoc and sensor networks. IEEE/ACM Transactions on Networking (TON), 16(1), 51–62.CrossRefGoogle Scholar
  27. 27.
    Na, J., & Kim, C.-K. (2006). GLR: A novel geographic routing scheme for large wireless ad hoc networks. Computer Networks, 50(17), 3434–3448.zbMATHCrossRefGoogle Scholar
  28. 28.
    Leong, B., Liskov, B., & Morris, R. (2006). Geographic routing without planarization. In NSDI (Vol. 6, p. 25).Google Scholar
  29. 29.
    Arad, N., & Shavitt, Y. (2009). Minimizing recovery state in geographic ad hoc routing. IEEE Transactions on Mobile Computing, 8(2), 203–217.CrossRefGoogle Scholar
  30. 30.
    Singh, H. (1999). Compass routing on geometric graphs. Ottawa: University of Ottawa.Google Scholar
  31. 31.
    Gabriel, K. R., & Sokal, R. R. (1969). A new statistical approach to geographic variation analysis. Systematic Biology, 18(3), 259–278.Google Scholar
  32. 32.
    Toussaint, G. T. (1980). The relative neighbourhood graph of a finite planar set. Pattern Recognition, 12(4), 261–268.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Leong, B., Mitra, S., & Liskov, B. (2005). Path vector face routing: Geographic routing with local face information. In 13th IEEE international conference on network protocols, 2005. ICNP 2005 (p. 12). IEEE.Google Scholar
  34. 34.
    Kuhn, F., Wattenhofer, R., & Zollinger, A. (2002). Asymptotically optimal geometric mobile ad-hoc routing. In Proceedings of the 6th international workshop on discrete algorithms and methods for mobile computing and communications (pp. 24–33). ACM.Google Scholar
  35. 35.
    Maghsoudlou, A., St-Hilaire, M., & Kunz, T. (2011). A survey on geographic routing protocols for mobile ad hoc networks. Technical report SCE-11-03, Carleton University, Systems and Computer Engineering.Google Scholar
  36. 36.
    Abdallah, A. E., Fevens, T., & Opatrny, J. (2006). Randomized 3D position-based routing algorithms for ad-hoc networks. In 3rd annual international conference on mobile and ubiquitous systems-workshops (pp. 1–8). IEEE.Google Scholar
  37. 37.
    Lam, S. S., & Qian, C. (2013). Geographic routing in d-dimensional spaces with guaranteed delivery and low stretch. IEEE/ACM Transactions on Networking (TON), 21(2), 663–677.CrossRefGoogle Scholar
  38. 38.
    Abdallah, A. E., Fevens, T., & Opatrny, J. (2008). High delivery rate position-based routing algorithms for 3D ad hoc networks. Computer Communications, 31(4), 807–817.CrossRefGoogle Scholar
  39. 39.
    Xu, Y., Zhuang, Y., & Gu, J-j. (2015). An improved 3D localization algorithm for the wireless sensor network. International Journal of Distributed Sensor Networks, 2015, 98:98–98:98Google Scholar
  40. 40.
    Song, G., Tam, D., Liao, D., Lee, Q., & Lee, R. (2015). 3D localization algorithm for wireless sensor networks based on DCP and VRT. In Embedded system technology (pp. 58–67). Singapore: Springer.Google Scholar
  41. 41.
    Dhanapala, D. C., & Jayasumana, A. P. (2014). Topology preserving maps: Extracting layout maps of wireless sensor networks from virtual coordinates. IEEE/ACM Transactions on Networking, 22(3), 784–797. Jun.CrossRefGoogle Scholar
  42. 42.
    Caruso, A., Chessa, S., De, S., & Urpi, A. (2005). GPS free coordinate assignment and routing in wireless sensor networks. In Proceedings IEEE 24th annual joint conference of the IEEE computer and communications societies. INFOCOM 2005 (Vol. 1, pp. 150–160). IEEE.Google Scholar
  43. 43.
    Durocher, S., Kirkpatrick, D., & Narayanan, L. (2010). On routing with guaranteed delivery in three-dimensional ad hoc wireless networks. Wireless Networks, 16(1), 227–235.zbMATHCrossRefGoogle Scholar
  44. 44.
    Flury, R., & Wattenhofer, R. (2008). Randomized 3D geographic routing. In: The 27th conference on computer communications. IEEE INFOCOM 2008 (pp. 834–842). IEEE.Google Scholar
  45. 45.
    Xia, S., Yin, X., Wu, H., Jin, M., & Gu, X. D. (2014). Deterministic greedy routing with guaranteed delivery in 3D wireless sensor networks. Axioms, 3(2), 177–201.zbMATHCrossRefGoogle Scholar
  46. 46.
    Abdallah, A. E., Abdallah, E. E., Bsoul, M., & Otoom, A. F. (2016). Randomized geographic-based routing with nearly guaranteed delivery for three-dimensional ad hoc network. International Journal of Distributed Sensor Networks, 12(10), 1550147716671255.CrossRefGoogle Scholar
  47. 47.
    Abdallah, A. E., Fevens, T., Opatrny, J., & Stojmenovic, I. (2010). Power-aware semi-beaconless 3D georouting algorithms using adjustable transmission ranges for wireless ad hoc and sensor networks. Ad Hoc Networks, 8(1), 15–29.CrossRefGoogle Scholar
  48. 48.
    Liu, W.-J., & Feng, K.-T. (2009). Three-dimensional greedy anti-void routing for wireless sensor networks. IEEE Transactions on Wireless Communications, 8(12), 5796–5800.CrossRefGoogle Scholar
  49. 49.
    Abdallah, A. E., Fevens, T., & Opatrny, J. (2007). Power-aware 3D position-based routing algorithms for ad hoc networks. In IEEE international conference on communications, 2007. ICC’07. IEEE (pp. 3130–3135).Google Scholar
  50. 50.
    Huang, M., Li, F., & Wang, Y. (2010). Energy-efficient restricted greedy routing for three dimensional random wireless networks. In Wireless algorithms, systems, and applications (pp. 95–104).Google Scholar
  51. 51.
    Tsai, M.-J., Yang, H.-Y., Liu, B.-H., & Huang, W.-Q. (2009). Virtual-coordinate-based delivery-guaranteed routing protocol in wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 17(4), 1228–1241.CrossRefGoogle Scholar
  52. 52.
    Yu, X., Yin, X., Han, W., Gao, J., & Gu, X. (2012). Scalable routing in 3D high genus sensor networks using graph embedding. In Proceedings IEEE. INFOCOM, 2012 (pp. 2681–2685). IEEE.Google Scholar
  53. 53.
    Yu, T., Jiang, H., Tan, G., Wang, C., Tian, C., & Wu, Y. (2013) Sinus: A scalable and distributed routing algorithm with guaranteed delivery for WSNs on high genus 3D surfaces. In Proceedings IEEE. INFOCOM, 2013 (pp. 2175–2183).Google Scholar
  54. 54.
    Wang C, Jiang H, Dong Y (2016) Connectivity-based space filling curve construction algorithms in high genus 3D surface WSNs. ACM Transactions on Sensor Networks, 12(3), 1–29Google Scholar
  55. 55.
    Xia, S., Jin, M., Wu, H., & Zhou, H. (2012) Bubble routing: A scalable algorithm with guaranteed delivery in 3D sensor networks. In 2012 9th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 245–253).Google Scholar
  56. 56.
    Jain, M., Mishra, M. K., & Gore, M. (2009) Energy aware beaconless geographical routing in three dimensional wireless sensor networks. In First international conference on advanced computing. ICAC 2009 (pp. 122–128). IEEE.Google Scholar
  57. 57.
    Heissenbüttel, M., Braun, T., Bernoulli, T., & WäLchli, M. (2004). BLR: beacon-less routing algorithm for mobile ad hoc networks. Computer Communications, 27(11), 1076–1086.CrossRefGoogle Scholar
  58. 58.
    Wang, Y., Yi, C.-W., Huang, M., & Li, F. (2013). Three-dimensional greedy routing in large-scale random wireless sensor networks. Ad Hoc Networks, 11(4), 1331–1344.CrossRefGoogle Scholar
  59. 59.
    Liu, C., & Wu, J. (2009). Efficient geometric routing in three dimensional ad hoc networks. In INFOCOM 2009, IEEE (pp. 2751–2755). IEEE.Google Scholar
  60. 60.
    Rubeaai, S. F. A., Abd, M. A., Singh, B. K., & Tepe, K. E. (2016). 3D real-time routing protocol with tunable parameters for wireless sensor networks. IEEE Sensors Journal, 16(3), 843–853.CrossRefGoogle Scholar
  61. 61.
    Xia, S., Wu, H., & Jin, M. (2014). Trace-routing in 3D wireless sensor networks: A deterministic approach with constant overhead. In Proceedings of the 15th ACM international symposium on mobile ad hoc networking and computing (pp. 357–366). ACM.Google Scholar
  62. 62.
    Zhou, J., Chen, Y., Leong, B., & Feng, B. (2010). Practical virtual coordinates for large wireless sensor networks. In 18th IEEE international conference on network protocols (ICNP) (pp. 41–51). IEEE.Google Scholar
  63. 63.
    Liu, B.-H., Cheng, Y.-P., & Wen, C.-H. (2015). Efficient delivery-guaranteed geographic routing in 3D wireless sensor networks with holes. Wireless Communications and Mobile Computing, 15(15), 1897–1913.CrossRefGoogle Scholar
  64. 64.
    Huang, H., Yin, H., Min, G., Zhang, J., Wu, Y., & Zhang, X. (2018). Energy-aware dual-path geographic routing to bypass routing holes in wireless sensor networks. IEEE Transactions on Mobile Computing, 17(6), 1339–1352.CrossRefGoogle Scholar
  65. 65.
    Wang, J., Zhang, R., Yuan, J., & Du, X. (2018). A 3-dimensional energy-harvesting-aware routing scheme for space nanosatellite networks. IEEE Internet of Things Journal, 5, 2729–2740.CrossRefGoogle Scholar
  66. 66.
    Hara, M., Aoto, W., Iwata, A., Kanayama, N., Watanabe, T., & Kamaya, H. (2017) Geographic routing for 3-D wireless sensor networks with stochastic learning automata. In Proceedings of the ISCIE international symposium on stochastic systems theory and its applications, Vol. 2017. The ISCIE symposium on stochastic systems theory and its applications (pp. 153–159).Google Scholar
  67. 67.
    Abdallah, A. E. (2018). Low overhead hybrid geographic-based routing algorithms with smart partial flooding for 3D ad hoc networks. Journal of Ambient Intelligence and Humanized Computing, 9(1), 85–94.MathSciNetCrossRefGoogle Scholar
  68. 68.
    Gupta N. K., Yadav, R. S., & Nagaria, R. K. (2018). Void handling in 3D wireless sensor networks. In Proceedings of the 15th IEEE India council international conference (INDICON-2018). IEEE (in press).Google Scholar
  69. 69.
    Zhang, X. (2016). Localization in wireless sensor networks. Ph.D. dissertation, Arizona State University.Google Scholar
  70. 70.
    Sara, G. S., & Sridharan, D. (2014). Routing in mobile wireless sensor network: A survey. Telecommunication Systems, 57(1), 51–79.CrossRefGoogle Scholar
  71. 71.
    Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(2), 551–591.CrossRefGoogle Scholar
  72. 72.
    Amgoth, T., & Jana, P. K. (2015). Energy-aware routing algorithm for wireless sensor networks. Computers & Electrical Engineering, 41, 357–367.CrossRefGoogle Scholar
  73. 73.
    Yadav, S., & Yadav, R. S. (2016). A review on energy efficient protocols in wireless sensor networks. Wireless Networks, 22(1), 335–350.CrossRefGoogle Scholar
  74. 74.
    Kuila, P., & Jana, P. K. (2014). Approximation schemes for load balanced clustering in wireless sensor networks. The Journal of Supercomputing, 68(1), 87–105.CrossRefGoogle Scholar
  75. 75.
    Gupta, A. K., Kumar, R., & Gupta, N. K. (2014). A trust based secure gateway selection and authentication scheme in MANET. In International conference on contemporary computing and informatics (IC3I), 2014 (pp. 1087–1093). IEEE.Google Scholar
  76. 76.
    Karp, B., & Kung, H.-T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on mobile computing and networking (pp. 243–254). ACM.Google Scholar
  77. 77.
    Kim, Y.-J., Govindan, R., Karp, B., & Shenker, S. (2005). Geographic routing made practical. In Proceedings of the 2nd conference on symposium on networked systems design & implementation (Vol. 2, pp. 217–230). USENIX Association.Google Scholar
  78. 78.
    Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing. Technical report.Google Scholar
  79. 79.
    Caesar, M., Castro, M., Nightingale, E. B., O’Shea, G., & Rowstron, A. (2006). Virtual ring routing: Network routing inspired by DHTs. In ACM SIGCOMM computer communication review (Vol. 36, No. 4, pp. 351–362). ACM.Google Scholar
  80. 80.
    ibitemMao2007 Mao, Y., Wang, F., Qiu, L., Lam, S. S., & Smith, J. M. (2007) S4: Small state and small stretch routing protocol for large wireless sensor networks. In NSDI.Google Scholar
  81. 81.
    Zhou, H., Xia, S., Jin, M., & Wu, H. (2010). Localized algorithm for precise boundary detection in 3D wireless networks. In IEEE 30th international conference on distributed computing systems (ICDCS), 2010 (pp. 744–753). IEEE.Google Scholar
  82. 82.
    Sarkar, R., Yin, X., Gao, J., Luo, F., & Gu, X. D. (2009) Greedy routing with guaranteed delivery using RICCI flows. In IEEE international conference on information processing in sensor networks. IPSN 2009 (pp. 121–132).Google Scholar
  83. 83.
    Yin, X., Jin, M., Luo, F., & Gu, X. D. (2009). Discrete curvature flows for surfaces and 3-manifolds. In Emerging trends in visual computing (pp. 38–74). Springer.Google Scholar
  84. 84.
    Kuhn, F., Wattenhofer, R., & Zollinger, A. (2008). Ad hoc networks beyond unit disk graphs. Wireless Networks, 14(5), 715–729.CrossRefGoogle Scholar
  85. 85.
    Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C. T., Culler, D., Shenker, S., & Stoica, I. (2005). Beacon vector routing: Scalable point-to-point routing in wireless sensornets. In Proceedings of the 2nd conference on symposium on networked systems design & implementation (pp. 329–342). USENIX Association.Google Scholar
  86. 86.
    Zeng, W., Samaras, D., & Gu, D. (2010). Ricci flow for 3D shape analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 662–677.CrossRefGoogle Scholar
  87. 87.
    Duan, J., Li, D., Chen, W., & Liu, Z. (2014). 3D geometric routing without loops and dead ends in wireless sensor networks. Ad Hoc Networks, 13, 312–320.CrossRefGoogle Scholar
  88. 88.
    Gao, X., Zhong, G., Yan, J., & Lu, J. (2017) A geographic packet forwarding approach in 3D mobile ad hoc networks. In International conference on 5G for future wireless networks (pp. 420–428). Springer.Google Scholar
  89. 89.
    Flury, R. (2009) Sinalgo-simulator for network algorithms.Google Scholar
  90. 90.
    Stojmenovic, I., Russell, M., & Vukojevic, B. (2000). Depth first search and location based localized routing and QoS routing in wireless networks. In International conference on parallel processing, 2000. Proceedings (pp. 173–180). IEEE.Google Scholar
  91. 91.
    Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS’95 (pp. 39–43). IEEE.Google Scholar
  92. 92.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., & Stoica, I. (2003). Geographic routing without location information. In Proceedings of the 9th annual international conference on Mobile computing and networking (pp. 96–108). ACM.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Naveen Kumar Gupta
    • 1
    Email author
  • Rama Shankar Yadav
    • 1
  • Rajendra Kumar Nagaria
    • 2
  1. 1.Computer Science and Engineering DepartmentMotilal Nehru National Institute of Technology AllahabadPrayagrajIndia
  2. 2.Electronics and Communication Engineering DepartmentMotilal Nehru National Institute of Technology AllahabadPrayagrajIndia

Personalised recommendations