An improved adaptive dual prediction scheme for reducing data transmission in wireless sensor networks

  • Hidaya Liazid
  • Mohamed LehsainiEmail author
  • Abdelkrim Liazid


Currently one of the main problem for wireless networks is the medium access control. Hence, the number of data transmissions in wireless sensor networks should be optimized to support more applications and a higher diversity of sensed parameters. In addition, minimizing energy consumption of sensor nodes constitutes one of the main ways to prolong network lifetime. One way to achieve this objective is the exploitation of data prediction technique. This paper presents an innovative idea improving the adaptive dual prediction algorithm without recourse to the data history table to update the model parameters when it drifts. The idea is to exploit immediately the new model parameters performed from the stored ones corresponding to the models used previously during the past prediction phases and eliminated when the threshold imposed by the user exceeded. We carried out simulations using real data of meteorological parameters. We show that our approach achieves up to 99% communication reduction with no significant loss in accuracy.


Wireless sensor networks Data prediction Dual prediction scheme Cloud computing Autoregressive models 



  1. 1.
    Samarah, S. (2015). A data predication model for integrating wireless sensor networks and cloud computing. Procedia Computer Science, 52, 1141–1146. Scholar
  2. 2.
    Raza, U., Camerra, A., Murphy, A. L., Palpanas, T., & Picco, G. P. (2015). Practical data prediction for real-world wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 27(8), 2231–2244. Scholar
  3. 3.
    Hyndman, R. J., & Athanasopoulos, G. (2017). Forecasting: Principles and practice. Accessed 3 Nov 2017.
  4. 4.
    Wu, M., Tan, L., & Xiong, N. (2016). Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Information Sciences, 329, 800–818. Scholar
  5. 5.
    Brunelli, D., Dondi, D., Bertacchini, A., Larcher, L., Pavan, P., & Benin, L. (2009). Photovoltaic scavenging systems: Modeling and optimization. Microelectronics Journal, 40(9), 1337–1344. Scholar
  6. 6.
    Caione, C., Brunelli, D., & Benini, L. (2010). Compressive sensing optimization over ZigBee networks. In 2010 International symposium on industrial embedded system (SIES), pp. 36–44.Google Scholar
  7. 7.
    Aderohunmu, F. A., Paci, G., Brunelli, D., Deng, J. D., & Benini, L. (2013). Prolonging the lifetime of wireless sensor networks using light-weight forecasting algorithms. In 2013 IEEE eighth international conference on intelligent sensors, sensor networks and information processing, pp. 461–466.Google Scholar
  8. 8.
    Aderohunmu, F. A., Paci, G., Brunelli, D., Deng, J. D., Benini, L., & Purvis, M. (2013). An application-specific forecasting algorithm for extending WSN lifetime. In 2013 IEEE international conference on distributed computing in sensor systems, pp. 374–381.Google Scholar
  9. 9.
    Dias, G. M., Bellalta, B., & Oechsner, S. (2016). A survey about prediction-based data reduction in wireless sensor networks. ACM Computing Surveys, 49, 35. Scholar
  10. 10.
    Jiang, H., Jin, S., & Wang, C. (2011). Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(6), 1064–1071. Scholar
  11. 11.
    Langendoen, K., & Meier, A. (2010). Analyzing MAC protocols for low data-rate applications. ACM Transactions on Sensor Networks, 7(1), 34. Scholar
  12. 12.
    Dias, G. M., Bellalta, B., & Oechsner, S. (2017). The impact of dual prediction schemes on the reduction of the number of transmissions in sensor networks. Computer Communications, 112(1), 58–72. Scholar
  13. 13.
    Souza, L., Pazzi, R. W., & Nakamura, E. F. (2015). A prediction-based clustering algorithm for tracking targets in quantized areas for wireless sensor networks. Wireless Networks, 21(7), 2263–2278. Scholar
  14. 14.
    Nazaktabar, H., Badie, K., & Ahmadabadi, M. N. (2017). RLSP: A signal prediction algorithm for energy conservation in wireless sensor networks. Wireless Networks, 23, 919–933. Scholar
  15. 15.
    McCorrie, D. J., Gaura, E., Burnham, K., Poole, N., & Hazelden, R. (2015). Predictive data reduction in wireless sensor networks using selective filtering for engine monitoring. In Wireless sensor and mobile ad-hoc networks: Vehicular and space applications, Springer New York, NY, pp. 129-148.
  16. 16.
    Liu, C., Wu, K., & Tsao, M. (2005). Energy efficient information collection with the ARIMA model in wireless sensor networks. In 2005 IEEE global telecommunications conference, Vol. 5, pp. 2470–2474.Google Scholar
  17. 17.
    Santini S., & Romer, K. (2006). An adaptive strategy for quality-based data reduction in wireless sensor networks. In Third international conference on networked sensing systems, pp. 29–36.Google Scholar
  18. 18.
    Tulone D., & Madden, S. (2006). PAQ: Time series forecasting for approximate query answering in sensor networks. In Wireless sensor networks, Vol. 3868, Springer, pp. 21–37.
  19. 19.
    Clark, B. N., Colbourn, C. J., & Johnson, D. S. (1990). Unit disk graphs. Discrete Mathematics, 86(13), 165–177. Scholar
  20. 20.
    Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Sixth annual international conference on mobile computing and networking (MobiCom00), pp. 243–254.Google Scholar
  21. 21.
    Wang, F., & Liu, J. (2011). Networked wireless sensor data collection: Issues, challenges, and approaches. IEEE Communications Surveys & Tutorials, 13(4), 673–687. Scholar
  22. 22.
    Le Borgne, Y. A., Santini, S., & Bontempi, G. (2007). Adaptive model selection for time series prediction in wireless sensor networks. Signal Process, 87(12), 3010–3020. Scholar
  23. 23.
    Li, G., & Wang, Y. (2013). Automatic ARIMA modeling-based data aggregation scheme in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2013(85), 1–13. Scholar
  24. 24.
    Mohanty, S. P. (2015). Nanoelectronic mixed-signal system design. McGraw-Hill. ISBN: 978-0071825719.Google Scholar
  25. 25.
    Rajaram, M. L. (2015). Comparative analysis and implementation of high data rate wireless sensor network simulation frameworks. Masters Thesis, Department of Engineering Technology, University of North Texas.Google Scholar
  26. 26.
    Polastre, J., Szewczyk R., & Culler, D. (2005). Telos: Enabling ultra-low power wireless research. In Fourth international symposium on information processing in sensor networks, pp. 364–369.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hidaya Liazid
    • 1
  • Mohamed Lehsaini
    • 1
    Email author
  • Abdelkrim Liazid
    • 2
    • 3
  1. 1.STIC LaboratoryUniversity of TlemcenTlemcenAlgeria
  2. 2.Science FacultyUniversity of TlemcenTlemcenAlgeria
  3. 3.LTE LaboratoryENP-Oran Maurice-AudinOranAlgeria

Personalised recommendations