Advertisement

Enhancing iris template matching with the optimal path method

  • Vladimir Novik
  • Ivan MatveevEmail author
  • Igor Litvinchev
Article
  • 15 Downloads

Abstract

Iris recognition provides a way to obtain a unique biometry-based digital key, which cannot be lost or forgotten. The accuracy of iris matching is strongly affected by correctness of alignment of its local features. It is proposed to split the matched images into several segments, then the alignment is sought using the method of the optimal path. The influence of the number of segments and restrictions on the mobility of neighboring segments on the recognition accuracy is investigated. Computational experiments were carried out with ICE2005 and CASIA databases.

Keywords

Biometric identification Iris recognition Optimal path 

Mathematics Subject Classification

68U10 92C55 

References

  1. 1.
    Bowyer, K., Hollingsworth, K., & Flynn, P. (2013). A survey of iris biometrics research: 2008–2010. In M. J. Burge & K. W. Bowyer (Eds.), Handbook of iris recognition, advances in computer vision and pattern recognition (pp. 15–54). London: Springer.  https://doi.org/10.1007/978-1-4471-4402-1-2.CrossRefGoogle Scholar
  2. 2.
    Bowyer, K. W., Hollingsworth, K., & Flynn, P. J. (2008). Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding, 110(2), 281–307.  https://doi.org/10.1016/j.cviu.2007.08.005.CrossRefGoogle Scholar
  3. 3.
    Daugman, J. (2002). How iris recognition works. Proceeding International Conference on Image Processing, 1, I-33–I-36.CrossRefGoogle Scholar
  4. 4.
    Daugman, J. G. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1148–1161.CrossRefGoogle Scholar
  5. 5.
    Erbilek, M., & Toygar, O. (2009). Recognizing partially occluded irises using subpattern-based approaches. In 2009 24th international symposium on computer and information sciences (pp. 606–610).  https://doi.org/10.1109/ISCIS.2009.5291890
  6. 6.
    Gankin, K., Gneushev, A., & Matveev, I. (2014). Iris image segmentation based on approximate methods with subsequent refinements. Journal of Computer and Systems Sciences International, 53(2), 224–238.CrossRefGoogle Scholar
  7. 7.
    Hao, F., Anderson, R., & Daugman, J. (2006). Combining crypto with biometrics effectively. IEEE Transactions on Computers, 55(9), 1081–1088.  https://doi.org/10.1109/TC.2006.138.CrossRefGoogle Scholar
  8. 8.
    He, Z., Tan, T., Sun, Z., & Qiu, X. (2009). Toward accurate and fast iris segmentation for iris biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9), 1670–1684.CrossRefGoogle Scholar
  9. 9.
    Institute of Automation, Chinese Academy of Sciences: CASIA Iris Image Database (2010). http://biometrics.idealtest.org/.
  10. 10.
    Ives, R. W., Guidry, A. J., & Etter, D. M. (2004). Iris recognition using histogram analysis. In Conference record of the thirty-eighth asilomar conference on signals, systems and computers, 2004,(Vol. 1, pp. 562–566).  https://doi.org/10.1109/ACSSC.2004.1399196
  11. 11.
    Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.  https://doi.org/10.1007/s11276-014-0761-7.CrossRefGoogle Scholar
  12. 12.
    Kerekes, R., Balakrishnan, N., Thornton, J., Savvides, M., & Kumar, B. V. K. V. (2007) Graphical model approach to iris matching under deformation and occlusion. In CVPR (pp. 1–6). IEEE Computer Society. http://www.cs.cmu.edu/~muralib/cvprDraft.pdf
  13. 13.
    Li, X. (2005). Modeling intra-class variation for nonideal iris recognition. In D. Zhang & A. Jain (Eds.), Advances in biometrics, lecture notes in computer science (Vol. 3832, pp. 419–427). Heidelberg: Springer.  https://doi.org/10.1007/11608288-56.CrossRefGoogle Scholar
  14. 14.
    Liu, J. (2011). A novel image deblurring method to improve iris recognition accuracy. In IEEE international joint conference on biometrics (pp. 1–8)Google Scholar
  15. 15.
    Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., & Nakajima, H. (2005). An efficient iris recognition algorithm using phase-based image matching. In IEEE international conference on image processing 2005 (Vol. 2, pp. II49–II52).  https://doi.org/10.1109/ICIP.2005.1529988
  16. 16.
    Pavelieva, E. A. (2013). Searching for correspondences between the key points of the images of the irises of the eyes using the method of the projected phase correlation. Systems and Means of Informatics, 23(2), 74–88.Google Scholar
  17. 17.
    Phang, S. S., Boles, W. W., & Collins, M. J.(2006). Tracking iris surface deformation using elastic graph matching. In Proceedings of the twenty-first international conference, image and vision computing new zealand (IVCNZ2006), Great Barrier Island, New Zealand (pp. 3–8)Google Scholar
  18. 18.
    Phillips, P. J., Scruggs, W. T., O’Toole, A. J., Flynn, P. J., Bowyer, K. W., Schott, C. L., et al. (2010). Frvt 2006 and ice 2006 large-scale experimental results. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 831–846.CrossRefGoogle Scholar
  19. 19.
    Songjang, T., & Thainimit, S. (2015). Tracking and modeling human iris surface deformation. In 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–5).  https://doi.org/10.1109/ECTICon.2015.7207025
  20. 20.
    Sun, Z., & Tan, T. (2009). Ordinal measures for iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2211–2226.  https://doi.org/10.1109/TPAMI.2008.240.CrossRefGoogle Scholar
  21. 21.
    Thainimit, S., Alexandre, L., & de Almeida, V. (2013). Iris surface deformation and normalization. In 2013 13th international symposium on communications and information technologies (ISCIT) (pp. 501–506).  https://doi.org/10.1109/ISCIT.2013.6645910.
  22. 22.
    Vivekanand, D., Schmid, N. A., & Fahmy, G. (2005). Performance evaluation of iris-based recognition system implementing PCA and ICA encoding techniques. In Proceedings volume 5779, biometric technology for human identification II.  https://doi.org/10.1117/12.604201.
  23. 23.
    Wildes, R. (1997). Iris recognition: An emerging biometric technology. Proceedings of the IEEE, 85(9), 1348–1363.CrossRefGoogle Scholar
  24. 24.
    Xu, J., Yang, J., Guo, C., Lee, Y. H., & Lu, D. (2015). Routing algorithm of minimizing maximum link congestion on grid networks. Wireless Networks, 21(5), 1713–1732.  https://doi.org/10.1007/s11276-014-0878-8.CrossRefGoogle Scholar
  25. 25.
    Zhang, M., Sun, Z., & Tan, T. (2011). Deformable daisy matcher for robust iris recognition. In 2011 18th IEEE international conference on image processing (pp. 3189–3192).  https://doi.org/10.1109/ICIP.2011.6116346

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Iritech Inc.MoscowRussia
  2. 2.FRC CSC RASMoscowRussia

Personalised recommendations