Advertisement

Packing ellipses in an optimized rectangular container

  • A. Pankratov
  • T. Romanova
  • I. Litvinchev
Article
  • 18 Downloads

Abstract

The paper studies packing ellipses in a rectangular container of minimum area. The problem has various applications in production, logistics, industrial design. New phi-functions are proposed to state containment constraints and quasi-phi-functions are used for analytical description of non-overlapping constraints. A mathematical model for the packing problem is stated as a nonlinear programming problem. Two algorithms to find feasible starting points for identical and non-identical ellipses are proposed. The optimization procedure is used as a compaction algorithm to search for local optimal solutions. Computational results are provided to show the efficiency of the proposed approach.

Keywords

Ellipses Packing Continuous rotations Phi-function technique Mathematical modelling Nonlinear optimization 

References

  1. 1.
    Kallrath, J., & Rebennack, S. (2014). Cutting ellipses from area-minimizing rectangles. Journal of Global Optimization, 59(2–3), 405–437.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Miller, P. (2012). Globally optimal packing of nonconvex two-dimensional shapes by approximation with ellipses. Senior thesis, Princeton University, Princeton, NJ.Google Scholar
  3. 3.
    Stoyan, Yu., Pankratov, A., & Romanova, T. (2017). Placement problems for irregular objects: Mathematical modeling, optimization and applications. In S. Butenko, et al. (Eds.), Optimization methods and applications (pp. 521–558). New York: Springer.CrossRefGoogle Scholar
  4. 4.
    Stoyan, Y., Pankratov, A., & Romanova, T. (2016). Cutting and packing problems for irregular objects with continuous rotations: Mathematical modelling and non-linear optimization. Journal of the Operational Research Society, 67(5), 786–800.CrossRefGoogle Scholar
  5. 5.
    Litvinchev, I., Infante, L., & Ozuna, L. (2015). Packing circular like objects in a rectangular container. Journal of Computer and Systems Sciences International, 54(2), 259–267.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Litvinchev, I., Infante, L., & Ozuna, L. (2015). Approximate packing: Integer programming models, valid inequalities and nesting. In G. Fasano & J. Pintér (Eds.), Optimized packings and their applications. Springer optimization and its applications (Vol. 105, pp. 117–135). New York: Springer.Google Scholar
  7. 7.
    Stoyan, Yu., Pankratov, A., & Romanova, T. (2016). Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization, 65(2), 283–307.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Birgin, E. G., Lobato, R. D., & Martinez, J. M. (2016). Packing ellipsoids by nonlinear optimization. Journal of Global Optimization, 65(4), 709–743.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Birgin, E. G., Lobato, R. D., & Martinez, J. M. (2017). A nonlinear programming model with implicit variables for packing ellipsoids. Journal of Global Optimization, 68(3), 467–499.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Stoyan, Yu., & Romanova, T. (2012). Mathematical models of placement optimization: Two- and three-dimensional problems and applications. In G. Fasano & J. Pinter (Eds.), Modeling and optimization in space engineering. Springer optimization and its applications (Vol. 73, pp. 363–388). New York: Springer.CrossRefGoogle Scholar
  11. 11.
    Stoyan, Yu., Romanova, T., Pankratov, A., & Chugay, A. (2015). Optimized object packings using quasi-phi-functions. In G. Fasano & J. Pinter (Eds.), Optimized packings with applications (Vol. 105, pp. 265–293). New York: Springer.CrossRefGoogle Scholar
  12. 12.
    Wachter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Stoyan, Yu., & Pankratov, A. (1999). Regular packing of congruent polygons on the rectangular sheet. European Journal of Operational Research, 113, 653–675.CrossRefGoogle Scholar
  14. 14.
    Martinez-Rios, F., Marmolejo-Saucedo, J. A., Murillo-Suarez, A. (2019). A new heuristic algorithm to solve circle packing problem inspired by nanoscale electromagnetic fields and gravitational effects. In Proceedings of the 4th IEEE international conference on nanotechnology for instrumentation and measurement (NANOFIM 2018), 7–8 November, 2018, Mexico City, Mexico. Google Scholar
  15. 15.
    Torres-Escobar, R., Marmolejo-Saucedo, J. A., & Litvinchev, I. (2018). Linear models for non-congruent circle packing in a rectangular container. International Journal of Applied Engineering Research, 13(3), 1784–1790.Google Scholar
  16. 16.
    Torres-Escobar R., Marmolejo-Saucedo J.A., Litvinchev I., Vasant P. (2019). Monkey algorithm for packing circles with binary variables. In: Vasant P., Zelinka I., Weber GW. (eds) ICO 2018: Intelligent computing and optimization. Advances in intelligent systems and computing (Vol. 866, pp. 547-559). Springer, Cham.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Mechanical Engineering Problems of the National Academy of Sciences of UkraineKharkivUkraine
  2. 2.Nuevo Leon State University (UANL)MexicoMexico

Personalised recommendations