Advertisement

Allocation of optimal energy in an energy-harvesting cooperative multi-band cognitive radio network

  • Abhijt Bhowmick
  • Gopal Chandra Das
  • Sanjay Dhar Roy
  • Sumit Kundu
  • Santi P. Maity
Article

Abstract

This paper studies the achievable total throughput of an energy harvesting cooperative cognitive radio (CR) network. A CR transmitter cooperates with a primary user (PU) transmission if PU is found to be present in the given channel while it transmits its own data in the absence of PU. The CR transmitter is an energy harvesting node which harvests simultaneously from non-RF signal as well as RF signal of PU. The CR transmitter uses the harvested energy on shared basis for cooperation and transmission. The same study is also extended for cooperation of multiple CRs in multiple PU band scenario. In cooperation in muti-band scenario, all CRs sense all PU channels and sensing informations are fused at fusion centre to know about the status of PU. Performance is investigated in terms of total network throughput for several parameters such as sensing time, energy splitting parameter, and energy allocation ratio etc. Novel analytical expressions for total useful throughput and optimal energy allocation ratio parameter under the considered network scenario are developed. Useful throughput and optimal energy allocation ratio parameter are also estimated for a target secondary network (CR network) throughput under a quality of service constraint of PU such as collision probability. It is observed that the value of optimal energy allocation parameter gets reduced if the number of CRs in cooperation increases or the number of PU channels increases.

Keywords

Cognitive radio Energy allocation ratio Energy harvesting Multi-band Throughput 

References

  1. 1.
    Amjad, M., Rehmani, M. H., & Shiwen, M. (2018). Wireless multimedia cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 20(2), 1056–1103.CrossRefGoogle Scholar
  2. 2.
    Nitti, M., Murroni, M., Fadda, M., & Atzori, L. (2016). Exploiting social internet of things features in cognitive radio. IEEE Access, 4, 9204–9212.CrossRefGoogle Scholar
  3. 3.
    Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Tuan Hong, A. (2008). Sensing-throughput tradeoff for cognitive radio networks. transactions on Wireless Communications, 7(4), 1326–1337.CrossRefGoogle Scholar
  4. 4.
    Wu, Y., & May, T. D. H. K. (2011). Energy efficient spectrum sensing and transmission for cognitive radio system. IEEE Communications Letters, 15(5), 545–547.CrossRefGoogle Scholar
  5. 5.
    Jaein, K., Lee, H., Song, C., Taeseok, O., & Lee, I. (2017). Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks. IEEE Transactions on Wireless Communications, 6(2), 913–923.Google Scholar
  6. 6.
    Cai, L., Poor, H., Liu, Y., Luan, T., Shen, X., & Oct, M. J. (2011). Dimensioning network deployment and resource management in green mesh networks. IEEE Communications Letters, 18(5), 58–65.Google Scholar
  7. 7.
    Mao, S., Cheung, M. H., & Wong, V. (2012). An opimal energy allocation algorithm for energy harvesting wireless sensor networks. In Proceedings of IEEE international conference on communications (ICC12) (pp. 265–270).Google Scholar
  8. 8.
    Chatterjee, S., Maity, S. P., & Acharya, T. (2015). On opimal sensing time and power allocation for energy efficient cooperative cognitive radio networks. In Proceedings of IEEE ANTS 2015 (pp. 1–6).Google Scholar
  9. 9.
    Park, S., & Hong, D. (2014). Achievable throughput of energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 13(2), 1010–1022.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bhowmick, A., Roy, S. D., & Kundu, S. (2015). Performance of secondary User with combined RF and non-RF based energy-harvesting in cognitive radio network. In Proceedings of IEEE ANTS (pp. 1–3).Google Scholar
  11. 11.
    Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access, 5, 3801–3812.CrossRefGoogle Scholar
  12. 12.
    Yang, J., Ulukus, S. (2012). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.CrossRefGoogle Scholar
  13. 13.
    Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications,11(3), 1180–1189.CrossRefGoogle Scholar
  14. 14.
    Shafie, A. E., Ashour, M., Khattab, T., & Mohamed, A. (2015). On spectrum sharing between energy harvesting cognitive radio users and primary users. In Proceedings of international conference on computing, networking and communications (ICNC), IEEE, Garden Grove, CA (pp. 214–220).Google Scholar
  15. 15.
    Zhai, C., Liu, J., & Zheng, L. (2016). Relay-based spectrum sharing with secondary users powered by wireless energy harvesting. IEEE Transactions on Communications, 64(5), 1875–1887.CrossRefGoogle Scholar
  16. 16.
    Kalamkar, S. S., Jeyaraj, J. P., Banerjee, A., & Rajawat, K. (2016). Resource allocation and fairness in wireless powered cooperative cognitive radio networks. IEEE Transactions on Communications, 64(8), 3246–3261.CrossRefGoogle Scholar
  17. 17.
    Liu, X., Li, F., & Na, Z. (2016). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access, 5, 3801–3812.CrossRefGoogle Scholar
  18. 18.
    Hong, X., Kang, X., Wong, K.-K., & Nallanathan, A. (2017). Optimizing DF cognitive radio networks with full-duplex-enabled energy access points. IEEE Transactions on Wireless Communications, 16(7), 4683–4697.CrossRefGoogle Scholar
  19. 19.
    Yao, Y., Yin, C., Song, X., & Beaulieu, N. C. (2016). Increasing throughput in energy-based opportunistic spectrum access energy harvesting cognitive radio networks. Journal of Communications and Networks, 18(3), 340–350.CrossRefGoogle Scholar
  20. 20.
    Chi, X., Zheng, M., Liang, W., Haibin, Y., & Liang, Y.-C. (2017). End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting. IEEE Transactions on Wireless Communications, 16(6), 3561–3572.CrossRefGoogle Scholar
  21. 21.
    El Shafie, A., & Sultan, A. (2013). Optimal random access for a cognitive radio terminal with energy harvesting capability. Journal of Communications and Networks, 17(6), 1128–1131.Google Scholar
  22. 22.
    Michele, S., & Maurizio, M. (2010). Nonconvex optimization of collaborative multiband spectrum sensing for cognitive radios with genetic algorithms. International Journal of Digital Multimedia Broadcasting, 2010, 1–12.Google Scholar
  23. 23.
    Furtado, A., Irio, L., Oliveira, R., Bernardo, L., & Dinis, R. (2016). Spectrum sensing performance in cognitive radio networks with multiple primary users. IEEE Transactions on Vehicular Technology, 65(3), 1564–1574.CrossRefGoogle Scholar
  24. 24.
    Si, J., Li, Z., Yang, D., & Yan, Z. (2015). Parallel cooperative sensing in multichannel cognitive radio networks with partial CSI. International conference on wireless communications & signal processing (WCSP). (pp. 1–6).Google Scholar
  25. 25.
    Boulogeorgos, A. A., Chatzidiamantis, N. D., & Karagiannidis, G. K. (2016). Spectrum sensing with multiple primary users over fading channels. IEEE Communications Letter, 20(7), 1457–1460.Google Scholar
  26. 26.
    Ejaz, W., & Ibnkahla, M. (2018). Multiband Spectrum sensing and resource allocation for IoT in cognitive 5G networks. IEEE Internet of Things Journal, 5(1), 150–163.CrossRefGoogle Scholar
  27. 27.
    Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRefGoogle Scholar
  28. 28.
    Nasir, A. A., Zhou, S. D., Durrani, S., & Kennedy, R. A. (2014). Throughput and ergodic capacity of wireless energy harvesting based DF relaying network. In Proceedings of IEEE international conference on communications (ICC14) (pp. 4066–4071).Google Scholar
  29. 29.
    Zhiping, S., Kah, C. T., & Kwok, H. L. (2013). Energy efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Communications Letters, 17(3), 565–568.CrossRefGoogle Scholar
  30. 30.
    Liu, Y., & Tewfik, A. (2014). Primary traffic characterization and secondary transmissions. IEEE Transactions on Wireless Communications, 13(6), 3003–3016.CrossRefGoogle Scholar
  31. 31.
    Bhowmick, A., Sanjay, D. R., & Kundu, S. (2016). Throughput of a cognitive radio network with energy-harvesting based on primary user signal. IEEE Wireless Communications Letter, 5(2), 136–139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SENSEVIT UniversityVelloreIndia
  2. 2.Department of ECEBCETDurgapurIndia
  3. 3.Department of ECENIT DurgapurDurgapurIndia
  4. 4.Department of ITIIESTShibpurIndia

Personalised recommendations