Advertisement

Performance analysis for 5G beamforming heterogeneous networks

  • Yi Xie
  • Bo Li
  • Xiaoya Zuo
  • Zhongjiang Yan
  • Mao Yang
Article
  • 11 Downloads

Abstract

The heterogeneous network (HetNet) is an attractive solution to solve limited spectral efficiency, the increasing traffic demands, and crowded coverage. In 5G, massive multiple-input multiple-output and millimeter-wave technologies are considered to explore high array gain and alleviate high path loss with beamforming. In this paper, we propose a general tractable model for signal-to-interference-plus-noise ratio (SINR) analysis with cell expansion and beamforming for 5G. In this HetNet, each layer is characterized by particular parameters such as base station (BS) density, transmission power, beam gain, beamwidth, propagation loss, and bias factor. In our model, the expressions of outage probability for each layer and the whole network, which represent the SINR distributions, are derived through a typical user. We also analyze the rate performance by the minimum average user rates and the rate coverage probabilities. Furthermore, the spectrum reuse strategy, some layers are spectrum separation while others are spectrum sharing, are considered to consistent with the existing and future cellular network. From the simulations, system performance can be greatly improved by beamforming and affected by beamwidth, and the optimal bias changes with BS density and path loss. Furthermore, the proposed method provides practical deployment guidelines with some determined parameters.

Keywords

Heterogeneous network Massive MIMO Beamforming Cell expansion Stochastic geometry 

References

  1. 1.
    Ezhilarasan, E., & Dinakaran, M. (2017). A review on mobile technologies: 3G, 4G and 5G. In 2017 second international conference on recent trends and challenges in computational models (ICRTCCM) (pp. 369–373).Google Scholar
  2. 2.
    Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communcation, 21(3), 118.CrossRefGoogle Scholar
  3. 3.
    Wang, C. X., Haider, F., Gao, X. Q., You, X. H., Yang, Y., Yuan, D. F., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122.CrossRefGoogle Scholar
  4. 4.
    Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communcation, 18(3), 10.CrossRefGoogle Scholar
  5. 5.
    Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys and Tutorials, 18(2), 1018.CrossRefGoogle Scholar
  6. 6.
    TS 36.101. (2015). Evolved Universal Terrestrial Radio Access (E-UTRA). 3GPP.Google Scholar
  7. 7.
    Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64.CrossRefGoogle Scholar
  8. 8.
    Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186.CrossRefGoogle Scholar
  9. 9.
    Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065.CrossRefGoogle Scholar
  10. 10.
    Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Networks, 21(8), 2657.CrossRefGoogle Scholar
  11. 11.
    Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136.CrossRefGoogle Scholar
  12. 12.
    IEEE 802.11 WG. (2012). IEEE 802.11ad, Amendment 3: Enhancements for very high throughput in the 60 GHz band.Google Scholar
  13. 13.
    Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. I. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850.CrossRefGoogle Scholar
  14. 14.
    Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335.CrossRefGoogle Scholar
  15. 15.
    Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213.CrossRefGoogle Scholar
  16. 16.
    Rappaport, T. S., MacCartney, G. R., Sun, S., Yan, H., & Deng, S. (2017). Small-scale, local area, and transitional millimeter wave propagation for 5G communications. IEEE Transactions on Antennas and Propagation, 65(12), 6474.CrossRefGoogle Scholar
  17. 17.
    Han-Shin, J., Young Jin, S., Ping, X., & Andrews, J. G. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11(10), 3484.CrossRefGoogle Scholar
  18. 18.
    Singh, S., Dhillon, H. S., & Andrews, J. G. (2013). Offloading in heterogeneous networks: Modeling, analysis, and design insights. IEEE Transactions on Wireless Communications, 12(5), 2484.CrossRefGoogle Scholar
  19. 19.
    Chinipardaz, M., Rasti, M., & Nourhosseini, M. (2014). An overview of cell association in heterogeneous network: Load balancing and interference management perspective. In 2014 7th international symposium on telecommunications (IST) (pp. 1250–1256).Google Scholar
  20. 20.
    Andrews, J. G., Singh, S., Ye, Q., Lin, X., & Dhillon, H. S. (2014). An overview of load balancing in HetNets: Old myths and open problems. IEEE Wireless Communications, 21(2), 18.CrossRefGoogle Scholar
  21. 21.
    Chen, X., Wu, J., Cai, Y., Zhang, H., & Chen, T. (2015). Energy-efficiency oriented traffic offloading in wireless networks: A brief survey and a learning approach for heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 33(4), 627.CrossRefGoogle Scholar
  22. 22.
    Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706.CrossRefGoogle Scholar
  23. 23.
    Muhammad, F., Abbas, Z. H., & Li, F. Y. (2017). Cell association with load balancing in nonuniform heterogeneous cellular networks: Coverage probability and rate analysis. IEEE Transactions on Vehicular Technology, 66(6), 5241.CrossRefGoogle Scholar
  24. 24.
    Akoum, S., Ayach, O. E., & Heath, R. W. (2012). Coverage and capacity in mmwave cellular systems. In 2012 conference record of the forty sixth Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 688–692).Google Scholar
  25. 25.
    Tianyang, B., & Heath, R. W. (2015). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100.CrossRefGoogle Scholar
  26. 26.
    Yu, X., Zhang, J., Haenggi, M., & Letaief, K. B. (2017). Coverage Analysis for Millimeter Wave Networks: The Impact of Directional Antenna Arrays. IEEE Journal on Selected Areas in Communications, 35(7), 1498.CrossRefGoogle Scholar
  27. 27.
    Rebato, M., Park, J., Popovski, P., et al. (2018). Stochastic geometric coverage analysis in mmwave cellular networks with realistic channel and antenna radiation models. arXiv preprint arXiv:1806.04193.
  28. 28.
    Onireti, O., Imran, A., & Imran, M. A. (2018). Coverage, capacity, and energy efficiency analysis in the uplink of mmWave cellular networks. IEEE Transactions on Vehicular Technology, 67(5), 3982–3997.CrossRefGoogle Scholar
  29. 29.
    Umer, A., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). Coverage and rate analysis for massive MIMO-enabled heterogeneous networks with millimeter wave small cells. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5).Google Scholar
  30. 30.
    Yao, G., Liu, N., Pan, Z., & You, X. (2016). Coverage and rate analysis for non-uniform millimeter-wave heterogeneous cellular network. In 2016 8th international conference on wireless communications signal processing (WCSP) (pp. 1–6).Google Scholar
  31. 31.
    Yongyu, D., Shi, J., Leyuan, P., Xiqi, G., Lei, J., & Ming, L. (2015). Interference control based on beamforming coordination for heterogeneous network with RRH deployment. IEEE Systems Journal, 9(1), 58.CrossRefGoogle Scholar
  32. 32.
    Liu, C. H., Liang, D. C., & Yang, J. R., et al. (2017). A generalized analytical framework for coverage evaluation in mmWave heterogeneous cellular networks in urban areas. In Proceedings of IEEE international conference on communications (ICC) (pp. 1–7).Google Scholar
  33. 33.
    Simic, L., Panda, S., Riihijarvi, J., & Mahonen, P. (2017). Coverage and robustness of mm-Wave urban cellular networks: Multi-frequency HetNets are the 5G future. In 2017 14th annual IEEE international conference on sensing, communication, and networking (SECON), San Diego, CA (pp. 1–9).Google Scholar
  34. 34.
    Xie, Y., Li, B., Zuo, X., Yang, M., Yan, Z., & Xue, Q. (2016). Outage analysis for 5G beamforming heterogeneous networks. In 2016 IEEE international conference on signal processing, communications and computing (ICSPCC) (pp. 1–6).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics and InformationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations