Advertisement

An efficient scheme for trajectory design of mobile chargers in wireless sensor networks

  • Abhinav Tomar
  • Kumar Nitesh
  • Prasanta K. Jana
Article
  • 37 Downloads

Abstract

In large scale wireless rechargeable sensor networks, the limited battery capacity of sensors and finite network lifetime are widely regarded as performance bottlenecks. Recent findings in the domain of wireless energy transfer (WET) technologies have inspired the researchers to solve the energy and lifetime related problems. In the WET techniques, a wireless charging vehicle (WCV) carries a wireless power charger to transfer its energy to the sensor nodes over the air. In this work, we aim to design optimal trajectories for a given number of WCVs based on the routing loads of sensor nodes to make network operational for a longer time. We propose an efficient scheme for energy replenishment of sensor nodes which targets to improve overall charging performance. We perform extensive simulations on the proposed scheme to address the merits and validate its effectiveness over the existing HILBERT and S-CURVES(ad) schemes. Moreover, we evaluate our results through statistical analysis of variance test.

Keywords

Wireless energy transfer Wireless charging vehicle Traveling trajectory Energy replenishment 

References

  1. 1.
    Chatterjee, S., Carrera, C., & Lynch, L. A. (1996). Genetic algorithms and traveling salesman problems. European Journal of Operational Research, 93(3), 490–510.CrossRefGoogle Scholar
  2. 2.
    Dai, H., Wu, X., Chen, G., Xu, L., & Lin, S. (2014). Minimizing the number of mobile chargers for large-scale wireless rechargeable sensor networks. Computer Communications, 46, 54–65.CrossRefGoogle Scholar
  3. 3.
    Han, G., Qian, A., Liu, L., Jiang, J., & Zhu, C. (2015). Impacts of traveling paths on energy provisioning for industrial wireless rechargeable sensor networks. Microprocessors and Microsystems, 39(8), 1271–1278.CrossRefGoogle Scholar
  4. 4.
    He, L., Gu, Y., Pan, J., & Zhu, T. (2013a). On-demand charging in wireless sensor networks: Theories and applications. In 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (pp. 28–36). IEEE.Google Scholar
  5. 5.
    He, L., Kong, L., Gu, Y., Pan, J., & Zhu, T. (2015). Evaluating th eon-demand mobile charging in wireless sensor networks. IEEE Transactions on Mobile Computing, 14(9), 1861–1875.CrossRefGoogle Scholar
  6. 6.
    He, S., Chen, J., Jiang, F., Yau, D. K., Xing, G., & Sun, Y. (2013b). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.CrossRefGoogle Scholar
  7. 7.
    Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  8. 8.
    Jiang, F., He, S., Cheng, P., & Chen, J. (2011). On optimal scheduling in wireless rechargeable sensor networks for stochastic event capture. In 2011 IEEE eighth international conference on mobile ad-hoc and sensor systems (pp. 69–74). IEEE.Google Scholar
  9. 9.
    Koutsonikolas, D., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 30(13), 2577–2592.CrossRefGoogle Scholar
  10. 10.
    Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kurs, A., Moffatt, R., & Soljačić, M. (2010). Simultaneous mid-range power transfer to multiple devices. Applied Physics Letters, 96(4), 044102.CrossRefGoogle Scholar
  12. 12.
    Lin, C., Xue, B., Wang, Z., Han, D., Deng, J., & Wu, G. (2015). DWDP: A double warning thresholds with double preemptive scheduling scheme for wireless rechargeable sensor networks. In 2015 IEEE 7th international symposium on cyberspace safety and security (CSS), 2015 IEEE 12th international conference on embedded software and systems (ICESS), 2015 IEEE 17th international conference on high performance computing and communications (HPCC) (pp. 503–508). IEEE.Google Scholar
  13. 13.
    Lin, C., Wang, Z., Han, D., Wu, Y., Yu, C. W., & Wu, G. (2016a). TADP: Enabling temporal and distantial priority scheduling for on-demand charging architecture in wireless rechargeable sensor networks. Journal of Systems Architecture, 70, 26–38.CrossRefGoogle Scholar
  14. 14.
    Lin, C., Wu, G., Obaidat, M. S., & Yu, C. W. (2016b). Clustering and splitting charging algorithms for large scaled wireless rechargeable sensor networks. Journal of Systems and Software, 113, 381–394.CrossRefGoogle Scholar
  15. 15.
    Lin, C., Wu, Y., Liu, Z., Obaidat, M. S., Yu, C. W., & Wu, G. (2016c). Gtcharge: A game theoretical collaborative charging scheme for wireless rechargeable sensor networks. Journal of Systems and Software, 121, 88–104.CrossRefGoogle Scholar
  16. 16.
    Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21(2), 498–516.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Madhja, A., Nikoletseas, S., & Raptis, T. P. (2015). Distributed wireless power transfer in sensor networks with multiple mobile chargers. Computer Networks, 80, 89–108.CrossRefGoogle Scholar
  18. 18.
    Madhja, A., Nikoletseas, S., & Raptis, T. P. (2016). Hierarchical, collaborative wireless energy transfer in sensor networks with multiple mobile chargers. Computer Networks, 97, 98–112.CrossRefGoogle Scholar
  19. 19.
    Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A., & Lang, J. H. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76.CrossRefGoogle Scholar
  20. 20.
    Muller, K. E., & Fetterman, B. A. (2002). Regression and ANOVA: An integrated approach using SAS software. Cary: SAS Institute.zbMATHGoogle Scholar
  21. 21.
    Park, G., Rosing, T., Todd, M. D., Farrar, C. R., & Hodgkiss, W. (2008). Energy harvesting for structural health monitoring sensor networks. Journal of Infrastructure Systems, 14(1), 64–79.CrossRefGoogle Scholar
  22. 22.
    Shi, Y., Xie, L., Hou, Y. T., & Sherali, H. D. (2011). On renewable sensor networks with wireless energy transfer. In INFOCOM, 2011 proceedings IEEE (pp. 1350–1358). IEEE.Google Scholar
  23. 23.
    Wang, C., Li, J., Ye, F., & Yang, Y. (2013). Multi-vehicle coordination for wireless energy replenishment in sensor networks. In 2013 IEEE 27th international symposium on parallel & distributed processing (IPDPS) (pp. 1101–1111). IEEE.Google Scholar
  24. 24.
    Wu, J. (2014). Collaborative mobile charging and coverage. Journal of Computer Science and Technology, 29(4), 550–561.CrossRefGoogle Scholar
  25. 25.
    Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff, S. F. (2012a). On renewable sensor networks with wireless energy transfer: The multi-node case. In 2012 9th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 10–18). IEEE.Google Scholar
  26. 26.
    Xie, L., Shi, Y., Hou, Y. T., & Sherali, H. D. (2012b). Making sensor networks immortal: An energy-renewal approach with wireless power transfer. IEEE/ACM Transactions on Networking (TON), 20(6), 1748–1761.CrossRefGoogle Scholar
  27. 27.
    Xie, L., Shi, Y., Hou, Y. T., & Lou, A. (2013a). Wireless power transfer and applications to sensor networks. IEEE Wireless Communications, 20(4), 140–145.CrossRefGoogle Scholar
  28. 28.
    Xie, L., Shi, Y., Hou, Y. T., Lou, W., & Sherali, H. D. (2013b). On traveling path and related problems for a mobile station in a rechargeable sensor network. In Proceedings of the fourteenth ACM international symposium on mobile ad hoc networking and computing (pp. 109–118). ACM.Google Scholar
  29. 29.
    Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff S. F. (2013c). Bundling mobile base station and wireless energy transfer: Modeling and optimization. In INFOCOM, 2013 proceedings IEEE (pp. 1636–1644). IEEE.Google Scholar
  30. 30.
    Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff, S. F. (2015a). Multi-node wireless energy charging in sensor networks. IEEE/ACM Transactions on Networking, 23(2), 437–450.CrossRefGoogle Scholar
  31. 31.
    Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., Zhou, H., et al. (2015b). A mobile platform for wireless charging and data collection in sensor networks. IEEE Journal on Selected Areas in Communications, 33(8), 1521–1533.Google Scholar
  32. 32.
    Xu, W., Liang, W., Ren, X., & Lin, X. (2014). On-demand energy replenishment for sensor networks via wireless energy transfer. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp. 1269–1273). IEEE.Google Scholar
  33. 33.
    Yang, Y., & Wang, C. (2015). Wireless rechargeable sensor networks. Berlin: Springer.CrossRefGoogle Scholar
  34. 34.
    Zhang, S., Wu, J., & Lu, S. (2012). Collaborative mobile charging for sensor networks. In 2012 IEEE 9th international conference on mobile ad-hoc and sensor systems (MASS 2012) (pp. 84–92). IEEE.Google Scholar
  35. 35.
    Zhang, S., Wu, J., & Lu, S. (2015). Collaborative mobile charging. IEEE Transactions on Computers, 64(3), 654–667.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Department of Computer Science and EngineeringNIIT UniversityNeemranaIndia

Personalised recommendations