Advertisement

Wireless Networks

, Volume 25, Issue 8, pp 4683–4693 | Cite as

Performance analysis of scheduled TAS with MRC in the presence of non-identically delayed feedback channels

  • Donghun LeeEmail author
Article
  • 57 Downloads

Abstract

This paper studies the performance of a scheduled transmit antenna selection (TAS) with maximal ratio combining (MRC) in the presence of non-identically delayed feedback channels. This paper derives the probability density function of the scheduled TAS with MRC under non-identical feedback delay channels. Using the distribution, this paper derives exact closed-form expressions of the scheduled TAS with MRC for the outage probability and symbol error rate (SER) with M-ary phase shift keying and quadrature amplitude modulation as well as the ergodic capacity under the non-identical feedback delay channels. We also quantify the diversity order of the outage probability and SER. The asymptotic results show that the receive antenna diversity is only available under non-identical feedback delay channels, while the multi-user diversity and transmit spatial diversity are diminished compared to the perfect channel environment. Further, the performance of the scheduled TAS with MRC in the presence of non-identical feedback delay is significantly improved by the number of receive antennas, while the impact of the number of transmit antennas or correlation coefficients of feedback delay is insignificant.

Keywords

Transmit antenna selection Non-identically delayed feedback channels Scheduling SER Outage probability Diversity order Capacity 

References

  1. 1.
    Brennan, D. G. (1959). Linear diversity combining techniques. Proceedings of IRE, 47, 1075–1102.CrossRefGoogle Scholar
  2. 2.
    Zhao, H., Tan, Y., Pan, G., Chen, Y., & Yang, N. (2016). Secrecy outage on transmit antenna selection/maximal ratio combining in MIMO cognitive radio networks. The IEEE Transactions on Vehicular Technology, 65(12), 10236–10242.CrossRefGoogle Scholar
  3. 3.
    AbdelNabi, A., Al-Qahtani, F., Shaqfeh, M., Ikki, S., & Alnuweiri, H. (2016). Performance analysis of MIMO multi-hop system with TAS/MRC in Poisson field of interferers. IEEE Transactions on Communications, 64(2), 525–540.CrossRefGoogle Scholar
  4. 4.
    Yeoh, P., Elkashlan, M., Kim, K., Duong, T., & Karagiannidis, G. (2016). Transmit antenna selection in cognitive MIMO Relaying with multiple primary transceivers. The IEEE Transactions on Vehicular Technology, 65(1), 483–489.CrossRefGoogle Scholar
  5. 5.
    Labao, C., Martin, J., & Jerez, J. (2017). Analysis of correlated MRC with transmit antenna selection under \(\eta\)-\(\mu\) Fading. The IEEE Transactions on Vehicular Technology, 66(9), 8580–8584.CrossRefGoogle Scholar
  6. 6.
    Lei, H., Zhang, J., Park, K., Ansari, I., Pan, G., & Alouini, M. (2017). Secrecy performance of transmit antenna selection for MIMO relay systems with outdated CSI. IET Communications, 11(12), 1961–1969.CrossRefGoogle Scholar
  7. 7.
    Ozyurt, S., & Kucur, O. (2018). Performance analysis of maximal ratio combining with transmit antenna selection and signal space diversity under exponential antenna correlation. IET Communications, 12(5), 612–619.CrossRefGoogle Scholar
  8. 8.
    Ajib, W., & Haccoun, D. (2005). An overview of scheduling algorithms in MIMO based fourth generation wireless systems. IEEE Network, 19(5), 43–48.CrossRefGoogle Scholar
  9. 9.
    Spencer, Q. H., Peel, C. B., Swindlehurst, A. L., & Haardt, M. (2004). An introductin to the multi-user MIMO downlink. IEEE Communications Magazine, 42(10), 60–67.CrossRefGoogle Scholar
  10. 10.
    Viswanath, P., Tse, D. N. C., & Laroia, R. (2002). Opportunistic beamforming using dumb antennas. IEEE Transactions on Information Theory, 48, 1277–1294.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhang, X., Chen, F., & Wang, W. (2007). Outage probability study of multiuser diversity in MIMO transmit antenna selection systems. The IEEE Signal Processing, 14(3), 161–164.CrossRefGoogle Scholar
  12. 12.
    Zhang, X., Lv, Z., & Wang, W. (2008). Performance analysis of multiuser diversity in MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 7(1), 15–21.CrossRefGoogle Scholar
  13. 13.
    Lee, D., & Noh, Y. (2015). SER analysis of scheduled TAS with MRC in the presence of non-identical channel etimation errors. IEEE Communications Letters, 19(12), 2298–2301.CrossRefGoogle Scholar
  14. 14.
    Lee, D. (2016). Bit error rate analysis of the scheduled TAS with MRC for CR-MIMO systems. Physical Communication, 21, 70–76.CrossRefGoogle Scholar
  15. 15.
    Lee, D. (2017). Performance analysis of scheduled TAS–MRC MIMO systems with multiple interferers. IET Signal, 11(5), 572–578.CrossRefGoogle Scholar
  16. 16.
    Lee, D. (2018). Performance analysis of dual selection with maximal ratio combining over nonidentical imperfect channel estimation. The IEEE Transactions on Vehicular Technology, 67(3), 2819–2823.CrossRefGoogle Scholar
  17. 17.
    Tang, J., & Zhang, X. (2005). Error probability analysis of TAS/MRC-based scheme for wireless networks. In Proceedings of IEEE WCNC (pp. 877–882).Google Scholar
  18. 18.
    Chen, Z., Yuan, J., & Vucetic, B. (2005). Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. The IEEE Transactions on Vehicular Technology, 54(4), 1312–1321.CrossRefGoogle Scholar
  19. 19.
    Balakrishman, N., & Cohen, A. (1991). Order statistics and inference, estimation methods. Cambridge: Academic Press Inc.Google Scholar
  20. 20.
    Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Cambridge: Academic Press Inc.zbMATHGoogle Scholar
  21. 21.
    Ciang, C., Zhang, H., Han, Z., RAN, Y., Leung, V., & Hanzo, L. (2016). Information-sharing outage-probability analysis of vehicular networks. The IEEE Transactions on Vehicular Technology, 65(12), 9479–9492.CrossRefGoogle Scholar
  22. 22.
    Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.Google Scholar
  23. 23.
    Erdelyi, A. (1953). Higher transcendental functions. New York: McGraw-Hill.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chungcheongbuk-doRepublic of Korea

Personalised recommendations