Advertisement

Wireless Networks

, Volume 25, Issue 8, pp 4751–4772 | Cite as

HEEC: a hybrid unequal energy efficient clustering for wireless sensor networks

  • Seyed Mostafa Bozorgi
  • Amir Massoud BidgoliEmail author
Article

Abstract

An important challenge in wireless sensor networks is energy conservation. Recently, several hybrid, dynamic and static clustering protocols have been proposed to solve this challenge. In this paper, a hybrid unequal energy efficient clustering is proposed to improve previous methods and increase lifetime of the network. In the proposed protocol, a new mechanism called clustering strategy is used. This mechanism, based on arrangement of nodes in a network, determines whether nodes should use information of their neighbors or should not use this information. This strategy helps to reduce overhead considerably. On the other hand, clustering is unequal so that nodes closer to base station (BS) have more energy to receive and relay data towards BS. In order to reduce overhead, clustering is designed as hybrid static–dynamic so that transmitting control message for clustering is not required at each round. Two new techniques are proposed for routing. First, assistance to cluster heads mechanism which allows cluster heads to get help from some of its member nodes which have suitable energy and distance to help sharing cluster’s load. In other words, a new intra-cluster multi-hop routing is proposed. Second new technique is discretion license which is performed in real time and allows the nodes to prevent transmissions of packets that may arrive at a destination in an incomplete form. In addition, inter-cluster routing use a new technique based on layering is proposed. Simulation results show that the proposed method has reduced network overhead, increased network stability, energy balance and lifetime of the network.

Keywords

Wireless sensor networks Hybrid clustering Unequal clustering Multi-hop routing Network lifetime 

References

  1. 1.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  2. 2.
    Marappan, P., & Rodrigues, P. (2016). An energy efficient routing protocol for correlated data using CL-LEACH in WSN. Wireless Networks, 22(4), 1415–1423.  https://doi.org/10.1007/s11276-015-1063-4.CrossRefGoogle Scholar
  3. 3.
    Rehan, W., Fischer, S., Rehan, M., & Rehmani, M. H. (2017). A comprehensive survey on multichannel routing in wireless sensor networks. Journal of Network and Computer Applications, 95, 1–25.CrossRefGoogle Scholar
  4. 4.
    Pazzi, R. W., et al. (2017). A clustered trail-based data dissemination protocol for improving the lifetime of duty cycle enabled wireless sensor networks. Wireless Networks, 23(1), 177–192.CrossRefGoogle Scholar
  5. 5.
    Zareei, M., Islamb, M., Rosales, C., Mansoor, N., Goudarzi, S., & Rehmani, M. H. (2018). Mobility-aware medium access control protocols for wireless sensor networks: A survey. Journal of Network and Computer Applications, 104, 21–37.  https://doi.org/10.1016/j.jnca.2017.12.009.CrossRefGoogle Scholar
  6. 6.
    Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews, 45, 769–784.  https://doi.org/10.1016/j.rser.2015.02.021.CrossRefGoogle Scholar
  7. 7.
    Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.  https://doi.org/10.1016/j.jnca.2015.09.008.CrossRefGoogle Scholar
  8. 8.
    Lin, D., & Wang, Q. (2017). A game theory based energy efficient clustering routing protocol for WSNs. Wireless Networks, 23(4), 1101–1111.  https://doi.org/10.1007/s11276-016-1206-2.CrossRefGoogle Scholar
  9. 9.
    Li, J., Silva, B., Diyan, M., Cao, Z., & Han, K. (2018). A clustering based routing algorithm in IoT aware Wireless Mesh Networks. Sustainable Cities and Society, 40, 657–666.  https://doi.org/10.1016/j.scs.2018.02.017.CrossRefGoogle Scholar
  10. 10.
    Abdul-Qawy, A. S. H., & Srinivasulu, T. (2018). SEES: a scalable and energy-efficient scheme for green IoT-based heterogeneous wireless nodes. Journal of Ambient Intelligence and Humanized Computing.  https://doi.org/10.1007/s12652-018-0758-7.CrossRefGoogle Scholar
  11. 11.
    Bozorgi, S. M., Rostami, A. S., Rahmani, A. A., & Balas, V. E. (2017). A new clustering protocol for energy harvesting-wireless sensor networks. Computers & Electrical Engineering, 64, 233–247.CrossRefGoogle Scholar
  12. 12.
    Bozorgi, S. M., Amiri, M. G., Rostami, A. S. & Mohanna, F. (2015). A novel dynamic multi-hop clustering protocol based on renewable energy for energy harvesting wireless sensor networks. In 2015 2nd international conference on knowledge-based engineering and innovation (KBEI), Tehran (pp. 619–624).Google Scholar
  13. 13.
    Sarkar, A., & Senthil Murugan, T. (2017). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks.  https://doi.org/10.1007/s11276-017-1558-2.CrossRefGoogle Scholar
  14. 14.
    Jafarizadeh, V., Keshavarzi, A., & Derikvand, T. (2017). Efficient cluster head selection using Naive Bayes classifier for wireless sensor networks. Wireless Networks, 23(3), 779–785.CrossRefGoogle Scholar
  15. 15.
    Mittal, N., Singh, U., & Sohi, B. S. (2017). A stable energy efficient clustering protocol for wireless sensor networks. Wireless Networks, 23(6), 1809–1821.  https://doi.org/10.1007/s11276-016-1255-6.CrossRefGoogle Scholar
  16. 16.
    Haseeb, K., et al. (2017). Adaptive energy aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 23(6), 1953–1966.  https://doi.org/10.1007/s11276-016-1269-0.CrossRefGoogle Scholar
  17. 17.
    Tamandani, Y. K. & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Networks, 22, 647–653.  https://doi.org/10.1007/s11276-015-0997-x.CrossRefGoogle Scholar
  18. 18.
    Yang, L., Lu, Y., Zhong, Y., Wu, X., & Xing, S. (2016). A hybrid, game theory based, and distributed clustering protocol for wireless sensor networks. Wireless Networks, 22(3), 1007–1021.CrossRefGoogle Scholar
  19. 19.
    Logambigai, R., & Kannan, A. (2016). Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Networks, 22(3), 945–957.  https://doi.org/10.1007/s11276-015-1013-1.CrossRefGoogle Scholar
  20. 20.
    Lee, J.-S., & Cheng, W.-L. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2897.  https://doi.org/10.1109/JSEN.2012.2204737.CrossRefGoogle Scholar
  21. 21.
    Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.  https://doi.org/10.1016/j.jnca.2014.09.005.CrossRefGoogle Scholar
  22. 22.
    Malathi, L., Gnanamurthy, R. K., & Chandrasekaran, K. (2015). Energy efficient data collection through hybrid unequal clustering for wireless sensor networks. Computers & Electrical Engineering, 48, 358–370.  https://doi.org/10.1016/j.compeleceng.2015.06.019.CrossRefGoogle Scholar
  23. 23.
    Zanjireh, M. M., & Larijani, H. (2015). A survey on centralised and distributed clustering routing algorithms for WSNs(PDF). In IEEE 81st vehicular technology conference. Glasgow, Scotland: IEEE, Springer.Google Scholar
  24. 24.
    Younis, O., & Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.  https://doi.org/10.1109/TMC.2004.41.CrossRefGoogle Scholar
  25. 25.
    Lin, C. H., & Tsai, M. J. (2006). A comment on HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 5, 1471–1472.  https://doi.org/10.1109/TMC.2006.141.CrossRefGoogle Scholar
  26. 26.
    Hu, Y., & Niu, Y. (2016). An energy-efficient overlapping clustering protocol in WSNs. Wireless Networks.  https://doi.org/10.1007/s11276-016-1434-5.CrossRefGoogle Scholar
  27. 27.
    Gupta, V., & Pandey, R. (2016). An improved energy aware distributed unequal clustering protocol for heterogeneous wireless sensor networks. Engineering Science and Technology an International Journal.  https://doi.org/10.1016/j.jestch.2015.12.015.CrossRefGoogle Scholar
  28. 28.
    Mittal, N., Singh, U., Salgotra, R., & Sohi, B. S. (2017). A boolean spider monkey optimization based energy efficient clustering approach for WSNs. Wireless Networks.  https://doi.org/10.1007/s11276-017-1459-4.CrossRefGoogle Scholar
  29. 29.
    Mirzaie, M., & Mazinani, S. M. (2017). MCFL: an energy efficient multi-clustering algorithm using fuzzy logic in wireless sensor network. Wireless Networks.  https://doi.org/10.1007/s11276-017-1466-5.CrossRefGoogle Scholar
  30. 30.
    Neamatollahi, P., Naghibzadeh, M., & Abrishami, S. (2017). Fuzzy-based clustering-task scheduling for lifetime enhancement in wireless sensor networks. IEEE Sensors Journal, 17(20), 6837–6844.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Engineering, Tehran North BranchIslamic Azad UniversityTehranIran

Personalised recommendations