Advertisement

Wireless Networks

, Volume 25, Issue 7, pp 4147–4160 | Cite as

An enhanced distributed power control algorithm for mobile femtocells under limited dynamic range and its convergence

  • Sajjad AlizadehEmail author
  • Reza Saadat
Article
  • 40 Downloads

Abstract

This paper presents a distributed power control algorithm for wireless backhaul links of mobile femtocells by using the pilot’s information. Taking into account the limited dynamic range of transmitted powers, the SINR balancing of mobile (vehicular) femto base stations in their home macro base station and the load balancing among the macrocells are achieved by the proposed approach at the cost of exchanging some limited information among both macro and vehicular femto base stations. The algorithm is very beneficial especially in a high load heterogeneous network. Monte Carlo simulation results denote that the mobile femtocells can be uniformly assigned to the macrocells and the SINR balancing is achievable via the proposed scheme.

Keywords

Mobile (vehicular) femtocell Power allocation 5G cellular systems 

References

  1. 1.
    Rodriguez, J. (2015). Fundamentals of 5G mobile networks (1st ed.). Hoboken: Wiley.Google Scholar
  2. 2.
    Haider, F., Wang, C. X., Ai, B., Haas, H., & Hepsaydir, E. (2016). Spectral/energy efficiency tradeoff of cellular systems with mobile femtocell deployment. IEEE Transactions on Vehicular Technology, 65(5), 3389–3400.CrossRefGoogle Scholar
  3. 3.
    Duong, N. D., Madhukumar, A. S., & Niyato, D. (2016). Stackelberg Bayesian game for power allocation in two-tier networks. IEEE Transactions on Vehicular Technology, 65(4), 2341–2354.CrossRefGoogle Scholar
  4. 4.
    Mao, T. L., Feng, G., Liang, L., Qin, S., & Wu, B. (2016). Distributed energy-efficient power control for Macro–Femto networks. IEEE Transactions on Vehicular Technology, 65(2), 718–731.CrossRefGoogle Scholar
  5. 5.
    Tan, C. W. (2016). Optimal power control in Rayleigh-fading heterogeneous wireless networks. IEEE/ACM Transactions on Networking, 24(2), 940–953.CrossRefGoogle Scholar
  6. 6.
    Liu, Zh, Wang, J., Xia, Y., Fan, R., Jiang, H., & Yang, H. (2016). Power allocation robust to time-varying wireless channels in femtocell networks. IEEE Transactions on Vehicular Technology, 65(4), 2806–2815.CrossRefGoogle Scholar
  7. 7.
    Subramaniam, M., Anpalagan, A., & Woungang, I. (2012). Performance of a distributed full inversion power control and base station assignment scheme in a cellular CDMA network with hot-spots. Wireless Personal Communications, 65(3), 713–729.CrossRefGoogle Scholar
  8. 8.
    Alizadeh, S., & Saadat, R. (2017). Effect of uncertainty in the backhaul channel gain reciprocity on the performance of pilot assisted power allocation in vehicular small cells. Wireless Personal Communications, 96(4), 6503–6517.CrossRefGoogle Scholar
  9. 9.
    Alizadeh, S., & Saadat, R. (2017). Toward distributed robust power allocation of wireless backhaul links in vehicular small cells. Wireless Personal Communications, 95(4), 3857–3882.CrossRefGoogle Scholar
  10. 10.
    Li, Y., Jiang, T., Sheng, M., & Zhu, Y. (2016). QoS-aware admission control and resource allocation in underlay device-to-device spectrum-sharing networks. IEEE Journal on Selected Areas in Communications, 34(11), 2874–2886.CrossRefGoogle Scholar
  11. 11.
    Son, K., Lee, S., Yi, Y., & Chong, S. (2011). REFIM: A practical interference management in heterogeneous wireless access networks. IEEE Journal on Selected Areas in Communications, 29(6), 1260–1272.CrossRefGoogle Scholar
  12. 12.
    Li, Y., Sheng, M., Sun, Y., & Shi, Y. (2016). Joint optimization of BS operation, user association, subcarrier assignment, and power allocation for energy-efficient hetnets. IEEE Journal on Selected Areas in Communications, 34(12), 3339–3353.CrossRefGoogle Scholar
  13. 13.
    Tam, H. H. M., Tuan, H. D., Ngo, D. T., Duong, T. Q., & Poor, H. V. (2017). Joint load balancing and interference management for small-cell heterogeneous networks with limited backhaul capacity. IEEE Transactions on Wireless Communications, 16(2), 872–884.CrossRefGoogle Scholar
  14. 14.
    Gantmacher, F. R. (1990). The theory of matrices (Vol. 2). New York: Chelsea Publishing Company.Google Scholar
  15. 15.
    Lancaster, P., & Tismenetsky, M. (1985). The theory of matrices (2nd ed.). New York: Academic Press.zbMATHGoogle Scholar
  16. 16.
    Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
  17. 17.
    Apostol, T. M. (1973). Mathematical analysis. Boston: Adsion-Wesley Publishing Company.Google Scholar
  18. 18.
    Berger, S., Bjoern, A., Vinay, S., Paolo, Z., Ingo, V., & Gerhard, F. (2014). Dynamic range-aware uplink transmit power control in LTE networks: Establishing an operational range for LTE’s open-loop transmit power control parameters \((\alpha, P_ {0})\). IEEE Wireless Communications Letters, 3(5), 521–524.CrossRefGoogle Scholar
  19. 19.
    Ryhanen, T., Uusitalo, M. A., Ikkala, O., & Kärkkäinen, A. (2010). Nanotechnologies for future mobile devices. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. 20.
    Berger, S., Martin, D., Paolo, Z., Ingo, V., & Gerhard, F. (2015). Experimental evaluation of the uplink dynamic range threshold. EURASIP Journal on Wireless Communications and Networking, 15(1), 223–231.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringYazd UniversityYazdIran

Personalised recommendations