Energy efficient joint user scheduling and transmit beamforming in downlink DAS

  • Yue Wang
  • Jilei Yan
  • Dandi Li
  • Zhenfang Shi
  • Yantao Guo
  • Wei Wu
Article
  • 20 Downloads

Abstract

This paper studies the energy efficient joint user scheduling and transmit beamforming in the downlink of a single-cell distributed antenna system. Due to the distributed nature of antenna units, traditional power consumption model cannot be applied without the backhauling power taken into account. Therefore, under the constraints of the minimum rate requirement of each user and the transmit power budget of each distributed antenna unit, we maximize the system energy efficiency through making a tradeoff between the transmitting power and the backhauling power. By employing the parametric equivalence method to deal with the fractional objective and the \(\ell _1\)-norm relaxation method to cope with the user scheduling problem, the energy efficiency maximization is turned into a standard difference of convex program and then solved via the successive convex approximation method. Finally, the optimal sparse transmit beamforming vectors are obtained during the weighting factor iteration process, with the aim of minimizing the total power consumption while maintaining the achieved rate of each user. Extensive simulations are conducted to demonstrate the effectiveness of proposed scheme. Simulation results show that energy efficiency can benefit from not only the user scheduling but also the transmit beamforming optimization.

Keywords

Downlink DAS Energy efficiency Backhauling power User scheduling Transmit beamforming 

Notes

Acknowledgements

The study was funded by the Open Foundation of the Science and Technology on Communication Networks Laboratory.

References

  1. 1.
    Saleh, A. A. M., Rustako, A. J., & Roman, R. S. (1987). Distributed antennas for indoor radio communications. IEEE Transactions on Communications, 35(12), 1245–1251.CrossRefGoogle Scholar
  2. 2.
    Li, H. M., Hajipour, J., Attar, A., & Leung, V. C. M. (2011). Efficient HetNet implementation using broadband wireless access with fiber-connected massively distributed antennas architecture. IEEE Wireless Communications, 18(3), 72–78.CrossRefGoogle Scholar
  3. 3.
    Attar, A., Li, H. M., & Leung, V. C. M. (2011). Green last mile: How fiber-connected massively distributed antenna systems can save energy. IEEE Wireless Communications, 18(5), 66–74.CrossRefGoogle Scholar
  4. 4.
    Hong, X. M., Jie, Y., Wang, C. X., et al. (2013). Energy-spectral efficiency trade-off in virtual MIMO cellular systems. IEEE Journal on Selected Areas in Communications, 31(10), 2128–2140.CrossRefGoogle Scholar
  5. 5.
    Cong, X., Li, G. Y., Zhang, S. Q., et al. (2011). Energy- and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wireless Communications, 10(11), 3874–3886.CrossRefGoogle Scholar
  6. 6.
    Yang, G. R., Guo, J. L., Liu, G., & Gao, S. S. (2016). A cooperation method of mobile ad hoc network nodes based on energy efficiency. Radio Engineering, 46(5), 5–8.Google Scholar
  7. 7.
    da Silva, M. Marques, & Monteiro, F. A. (2014). MIMO processing for 4G and beyond: Fundamentals and evolution. Boca Raton: CRC Press Auerbach Publications.CrossRefGoogle Scholar
  8. 8.
    Jiang, D. D., Xu, Z. Z., Li, W. P., Yao, C. P., Lv, Z. H., & Li, T. (2016). An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks. Journal of Communications and Networks, 18(5), 713–724.Google Scholar
  9. 9.
    Ren, H., Liu, N., & Pan, C. H. (2016). Energy efficient transmission for multicast services in MISO distributed antenna systems. IEEE Communications Letters, 20(4), 756–759.CrossRefGoogle Scholar
  10. 10.
    Kim, H., Li, R. R., Song, C., Lee, K. J., & Lee, I. (2015). Optimal power allocation scheme for energy efficiency maximization in distributed antenna systems. IEEE Transactions on Communications, 63(2), 431–440.CrossRefGoogle Scholar
  11. 11.
    Wang, J., Feng, W., Chen, Y., & Zhou, S. D. (2016). Energy efficient power allocation for multicell distributed antenna systems. IEEE Communications Letters, 29(1), 177–180.CrossRefGoogle Scholar
  12. 12.
    Kim, H., Park, E., Park, H., & Lee, I. (2013). Beamforming and power allocation designs for energy efficiency maximization in MISO distributed antenna systems. IEEE Communications Letters, 17(11), 2100–2103.CrossRefGoogle Scholar
  13. 13.
    He, C. L., Sheng, B., Zhu, P. C., & You, X. H. (2012). Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems. IEEE Wireless Communications Letters, 1(3), 153–156.CrossRefGoogle Scholar
  14. 14.
    He, C. L., Sheng, B., Zhu, P. C., You, X. H., & Li, Y. (2013). Energy- and spectral-efficiency tradeoff for distributed antenna systems with proportional fairness. IEEE Journal on Selected Areas in Communications, 31(5), 894–902.CrossRefGoogle Scholar
  15. 15.
    Isheden, C., & Fettweis, G. P. (2010). Energy-efficient multi-carrier link adaptation with sum rate dependent circuit power. In Procedings of IEEE GlobeCom.Google Scholar
  16. 16.
    Xiao, X., Tao, X. M., & Lu, J. H. (2013). QoS-aware energy-efficient radio resource scheduling in multi-user OFDMA systems. IEEE Communications Letters, 17(1), 75–78.CrossRefGoogle Scholar
  17. 17.
    Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.CrossRefGoogle Scholar
  18. 18.
    He, C. L., Li, G. Y., Zheng, F., et al. (2014). Energy-efficient resource allocation in OFDM systems with distributed antennas. IEEE Transactions on Vehicular Technology, 63(3), 1223–1231.CrossRefGoogle Scholar
  19. 19.
    Zhu, H. L., & Wang, J. Z. (2013). Resource allocation in OFDMA-based distributed antenna systems. In Proceedings of IEEE ICCC (pp. 565–570).Google Scholar
  20. 20.
    Kim, H., Lee, S. R., Lee, K. J., et al. (2012). Transmission schemes based on sum rate analysis in distributed antenna systems. IEEE Transactions on Wireless Communications, 11(3), 1201–1209.CrossRefGoogle Scholar
  21. 21.
    Lei, Z., Ji, Y. S., & Yang, K. (2012). Energy efficient resource allocation in mobile networks with distributed antenna transmission. Mobile Networks and Applications, 17, 36–44.CrossRefGoogle Scholar
  22. 22.
    Joung, J., Chia, Y. K., & Sun, S. Energy-efficient large-scale distributed-antenna system (L-DAS) for multiple users. http://arxiv.org/abs/1312.1870v2.
  23. 23.
    Arnold, O., Richter, F., & Fettweis, G. et al. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Proceedings future network and mobile summit (pp. 1–8).Google Scholar
  24. 24.
    Tombaz, S., Monti, P., & Wang, K. et al. (2011). Impact of backhauling power consumption on the deployment of heterogeneous mobile networks. In Proceedings IEEE GLOBECOM (pp. 1–5).Google Scholar
  25. 25.
    Bjornson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14(6), 3059–3075.CrossRefGoogle Scholar
  26. 26.
    Mohammed, S. (2014). Impact of transceiver power consumption on the energy efficiency of zero-forcing detector in massive MIMO systems. IEEE Transactions on Communications, 62(11), 3874–3890.CrossRefGoogle Scholar
  27. 27.
    Li, C., Zhang, J., & Letaief, K. B. (2014). Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 13(5), 2505–2517.CrossRefGoogle Scholar
  28. 28.
    Yan, J. L., Wang, Y., Yang, G. R., Guo, Y. T., & Wu, W. (2016). Energy efficient resource allocation in orthogonal frequency division multiple access-based distributed antenna systems. IET Communications, 10(10), 1214–1220.CrossRefGoogle Scholar
  29. 29.
    Matskani, E., Sidiropoulos, N. D., Luo, Z. Q., & Tassiulas, L. (2008). Convex approximation techniques for joint multiuser downlink beamforming and admission control. IEEE Transactions on Wireless Communications, 7(7), 2682–2693.CrossRefGoogle Scholar
  30. 30.
    Derrick, W. K. N., Ernest, S. L., & Robert, S. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.CrossRefGoogle Scholar
  31. 31.
    Kha, H. H., Tuan, H. D., & Nguyen, H. H. (2012). Fast global optimal power allocation in wireless networks by local D.C. programming. IEEE Transactions on Wireless Communications, 11(2), 510–515.CrossRefGoogle Scholar
  32. 32.
    Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13, 492–498.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Grant, M., & Boyd, S. (2011). CVX: Matlab software for disciplined convex programming. http://cvxr.com/cvx/. Accessed 18 June 2016.
  34. 34.
    Luo, Z. Q., Ma, W. K., So, A. M. C., et al. (2010). Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3), 20–34.CrossRefGoogle Scholar
  35. 35.
    Candes, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Zhao, J., Quek, T. Q. S., & Lei, Z. D. (2013). Coordinated multipoint transmission with limited backhaul data transfer. IEEE Transactions on Wireless Communications, 12(6), 2762–2775.CrossRefGoogle Scholar
  37. 37.
    Ye, Y. (1997). Interior point algorithms: Theory and analysis. Hoboken, NJ: Wiley.CrossRefMATHGoogle Scholar
  38. 38.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATHGoogle Scholar
  39. 39.
    Liu, Y. F., Dai, Y. H., & Luo, Z. Q. (2011). Coordinated beamforming for MISO interference channel: Complexity analysis and efficient algorithms. IEEE Transactions on Signal Processing, 59(3), 1142–1157.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The 54th Research Institute of CETCShijiazhuangChina
  2. 2.The Science and Technology on Communication Networks LaboratoryShijiazhuangChina

Personalised recommendations