Advertisement

Wireless Networks

, Volume 25, Issue 6, pp 3029–3046 | Cite as

EEM-EHWSN: Enhanced Energy Management Scheme in Energy Harvesting Wireless Sensor Networks

  • Abdelmalek BengheniEmail author
  • Fedoua Didi
  • Ilyas Bambrik
Article

Abstract

Energy conservation is the main major issue in wireless sensor networks (WSNs). Indeed, recharging energy sources in WSNs is often too costly, difficult and sometimes impossible. To extend the WSN lifetime without recharging, energy saving methods and energy harvesting systems are crucial. In this paper, we propose Enhanced Energy Management Scheme in Energy Harvesting Wireless Sensor Networks (EEM-EHWSN). EEM-EHWSN uses receiver-initiated communication that regulates the active/sleep periods through the introduction of an energy threshold policy and use of remaining energy in order to decrease the duty-cycle while ensuring a balance between the energy consumption and energy harvesting ability by each sensor node in the WSN. The EEM-EHWSN was implemented using OMNeT++/MiXiM, and the simulation results show that our scheme improves the overall performance of the network through reducing the mean latency, increasing the throughput and the packet delivery ratio.

Keywords

EEM-EHWSN Wireless sensor networks (WSNs) Energy harvesting (EH) Duty-cycle OMNeT++ MiXiM 

References

  1. 1.
    Chiang, S. Y., Kan, Y. C., Chen, Y. S., Tu, Y. C., & Lin, H. C. (2016). Fuzzy computing model of activity recognition on WSN movement data for ubiquitous healthcare measurement. Sensors, 16(12), 2053.CrossRefGoogle Scholar
  2. 2.
    Akhtar, R., Leng, S., & Memon, I. (2014). Architecture for efficient content distribution in hybrid mobile social networks. Control Engineering and Electronics Engineering, 95, 399–409.CrossRefGoogle Scholar
  3. 3.
    Akhtar, R., Leng, S., Memon, I., Ali, M., & Zhang, L. (2015). Architecture of hybrid mobile social networks for efficient content delivery. Wireless Personal Communications, 80(1), 85–96.CrossRefGoogle Scholar
  4. 4.
    Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. M. (2011). Body area networks: A survey. Mobile Networks and Application, 16(2), 171–193.CrossRefGoogle Scholar
  5. 5.
    Ahmed, H. I., Wei, P., Memon, I., Du, Y., & Xie, W. (2013). Estimation of time difference of arrival (TDoA) for the source radiates BPSK signal. IJCSI International Journal of Computer Science Issues, 10(3), 164–171.Google Scholar
  6. 6.
    Memon, I., & Arain, Q. A. (2017). Dynamic path privacy protection framework for continuous query service over road networks. World Wide Web, 20(4), 639–672.CrossRefGoogle Scholar
  7. 7.
    Memon, I., Chen, L., Arain, Q. A., Memon, H., & Chen, G. (2017). Pseudonym changing strategy with multiple mix zones for trajectory privacy protection in road networks. International Journal of Communication Systems, 31(1), e3437.  https://doi.org/10.1002/dac.3437 CrossRefGoogle Scholar
  8. 8.
    Ali, N. A., ElSayed, H. M., El-Soudani, M., Amer, H. H., & Daoud, R. M. (2012). Elongation of WSN lifetime using a centralised clustering technique. International Journal of Systems, Control and Communications, 4(4), 250–261.CrossRefGoogle Scholar
  9. 9.
    Batra, P. K., & Kant, K. (2016). A clustering algorithm with reduced cluster head variations in LEACH protocol. International Journal of Systems, Control and Communications, 7(4), 321–336.CrossRefGoogle Scholar
  10. 10.
    Fan, C. S. (2015). An energy-efficient two phases cluster head selection in corona-based wireless sensor networks. Int. J of Ad Hoc and Ubiquitous. Computing, 20(1), 17–25.Google Scholar
  11. 11.
    Chuang, P. J., Yang, S. H., & Lin, C. S. (2009). Energy-efficient clustering in wireless sensor networks. In A. Hua, S. L. Chang (Eds.), Algorithms and architectures for parallel processing. ICA3PP 2009. Lecture Notes in computer science (Vol. 5574, pp. 112–120). Berlin: Springer.Google Scholar
  12. 12.
    Kim, H. Y. (2016). An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. International Journal of Cluster Computing, 19(1), 279–283.CrossRefGoogle Scholar
  13. 13.
    Arain, Q. A., Uqaili, M. A., Deng, Z., Memon, I., Jiao, J., Shaikh, M. A., et al. (2017). Clustering based energy efficient and communication protocol for multiple mix-zones over road networks. Wireless Personal Communications, 95(2), 411–428.CrossRefGoogle Scholar
  14. 14.
    Maheswar, R., Jayarajan, P., & Sheriff, F. N. (2013). A survey on duty cycling schemes for wireless sensor networks. International Journal of Computer Networks and Wireless Communications, 3(1), 37–40.Google Scholar
  15. 15.
    Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Twenty-first annual joint conferences of the IEEE computer and communications societies. Proceedings. IEEE.Google Scholar
  16. 16.
    Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In SenSys 04: Proceedings of the 2nd international conference on Embedded networked sensor systems, New York, NY, USA (pp. 95–107). ACM.Google Scholar
  17. 17.
    Buettner, M., Yee, G. V, Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In SenSys06: Proceedings of the 4th international conference on embedded networked sensor systems, New York, NY, USA (pp. 307–320). ACM.Google Scholar
  18. 18.
    Sun, Y., Gurewitz, O., & Johnson, D. B. (2008). RIMAC: A receiver initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In SenSys 08: Proceedings of the 6th ACM conference on embedded networked sensor systems.Google Scholar
  19. 19.
    Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2011). An energy-efficient predictive wakeup MAC protocol for wireless sensor networks. In Proceedings of the 30th IEEE international conference on computer communications (INFOCOM 2011) (pp. 1305–1313).Google Scholar
  20. 20.
    Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.CrossRefGoogle Scholar
  21. 21.
    Ma, S., Yang, Y., Qian, Y., Sharif, H., & Alahmad, M. (2016). Energy harvesting for wireless sensor networks: Applications and challenges in smart grid. International Journal of Sensor Networks, 21(4), 226–241.CrossRefGoogle Scholar
  22. 22.
    Jeličić. V. (2011). Power management in wireless sensor networks with high-consuming sensors. Qualifying Doctoral Examination.Google Scholar
  23. 23.
    Fafoutis, X., & Dragoni, N. (2011). ODMAC: An on-demand MAC protocol for energy harvesting wireless sensor networks. In Proceedings of 8th ACM symposium on performance evaluation of wireless ad-hoc, sensor, and ubiquitous network, Miami, FL, USA (pp. 49–56).Google Scholar
  24. 24.
    Nguyen, K., Nguyen, V. H., Le, D. D., Ji, Y., Duong, D. A., & Yamada, S. (2014). ERI-MAC: An energy harvested receiver initiated MAC protocol for wireless sensor networks. International Journal of Distributed Sensor Networks, 2014, 1–8.Google Scholar
  25. 25.
    Yoo, H., Shim, M., & Kim, D. (2012). Dynamic dutycycle scheduling schemes for energy-harvesting wireless sensor networks. IEEE Communications Letters, 16(2), 202–204.CrossRefGoogle Scholar
  26. 26.
    Ramezani, P., & Pakravan, R. M. (2015). Overview of MAC protocols for energy harvesting wireless sensor networks. In IEEE 26th international symposium on personal, indoor and mobile radio communications-(PIMRC): Mobile and wireless networks (pp. 2032–2037).Google Scholar
  27. 27.
    Kosunalp, S. (2015). MAC protocols for energy harvesting wireless sensor networks: Survey. IEEE 26th International ETRI Journal, 37(4), 804–812.CrossRefGoogle Scholar
  28. 28.
    Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2011). Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Ad-Hoc Network, 9(3), 300–323.CrossRefGoogle Scholar
  29. 29.
    Eu, Z. A., & Tan, H. P. (2012). Probabilistic polling for multi-hop energy harvesting wireless sensor networks. In IEEE Interenational Symposium on Ad hoc Sensor Network, Ottawa, Canada, June 10–15 (pp. 271–275).Google Scholar
  30. 30.
    Fujii, C., & Seah, W. K. G. (2011). Multi-tier probabilistic polling in wireless sensor networks powered by energy harvesting. IEEE international conference on intelligent sensors, sensor network. Information process, Adelaide, Australia, Dec 6–9 (pp. 383–388).Google Scholar
  31. 31.
    Kim, S. C., Jeaon, J. H., & Park, H. J. (2012). QoS aware energy-efficient (QAEE) MAC protocol for energy harvesting wireless sensor networks. In Convergence hybrid information, technology, Daejeon, Republic of Korea (pp. 41–48).Google Scholar
  32. 32.
    Layerle, D., & Kwasinski, A. (2011). A power efficient pulsed mac protocol for body area networks. In IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC), Tronto, ON, Canada, Sept 11–14 (pp. 2244–2248).Google Scholar
  33. 33.
    Kim, Y., Park, C. W., & Lee, T. J. (2014). MAC protocol for energy harvesting users in cognitive radio networks. In: Proceedings of 8th international conference on ubiquitous information management and communication.Google Scholar
  34. 34.
    Liu, H. I., He, W. J., & Seah, W. K. G. (2014). LEBMAC: Load and energy balancing MAC protocol for energy harvesting powered wireless sensor networks. In 20th IEEE international conference on parallel and distributed systems (ICPADS), Hsinchu, Taiwan.Google Scholar
  35. 35.
    Lin, H. H., Shih, M. J., Wei, H. Y., & Vannithamby, R. (2014). DeepSleep: IEEE 802.11 enhancement for energy-harvesting machine-to-machine communications. Wireless Networks, 21(2), 357–370.CrossRefGoogle Scholar
  36. 36.
    Iannello, F., Simeone, O., & Spagnolini, U. (2012). Medium access control protocols for wireless sensor networks with energy harvesting. IEEE Transactions on Communications, 60(5), 1381–1389.CrossRefGoogle Scholar
  37. 37.
    Tadayon, N., Wang, H., & Michel, H. E. (2013). Power management in SMAC-based energy harvesting wireless sensor networks using queuing analysis. Journal of Network and Computer Applications, 36(3), 1008–1017.CrossRefGoogle Scholar
  38. 38.
    Köpke, A., Swigulski, M., Wessel, K., Willkomm, D., Haneveld, P. T. K., Parker, T. E. V., et al. (2008). Simulating wireless and mobile networks in omnet++ the mixim vision. In Proceedings of the 1st international conference on simulation tools and techniques for communications, networks and systems (SIMUTools). Marseille, France: ICST (pp. 71:1–71:8).Google Scholar
  39. 39.
    MiXiM Documentation. http://mixim.sourceforge.net/. October 2017.
  40. 40.
    Nguyen, V. T., Gautier, M., & Berder, O. (2014). Implementation of an adaptive energy-efficient MAC protocol in OMNeT++/MiXiM. 1st OMNeT++ Community Summit, France (pp. 1–4).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abdelmalek Bengheni
    • 1
    Email author
  • Fedoua Didi
    • 1
  • Ilyas Bambrik
    • 1
  1. 1.Department of Computer Science, Laboratory of Research in Informatics of Tlemcen (LRIT), Faculty of ScienceNew University Pole Abou Bekr Belkaid Tlemcen- MansourahTlemcenAlgeria

Personalised recommendations