Advertisement

Using IoT and smart monitoring devices to optimize the efficiency of large-scale distributed solar farms

  • Salsabeel Shapsough
  • Mohannad Takrouri
  • Rached Dhaouadi
  • Imran A. Zualkernan
Article
  • 33 Downloads

Abstract

This paper presents a novel IoT-based architecture that utilizes IoT hardware, software, and communication technologies to enable real-time monitoring and management of solar photovoltaic systems at large scales. The system enables stakeholders to remotely control and monitor the photovoltaic systems and evaluate the effect of various environmental factors such as weather, air quality, and soiling. The system was implemented and evaluated in terms of network delay and resource consumption. Message Queueing Telemetry Transport (MQTT) was used to facilitate wide-scale real-time communication. The average network delay was found to be less than 1 s, proving the architecture to be ideal for solar and smart grid monitoring systems. As for resource consumption, the evaluation showed the hardware to consume about 3% of the panel’s output, while the application also utilized a very small percentage of the CPU. This led to the conclusion that the proposed architecture is best deployed using low-cost constrained edge devices where a combination of IoT-based paradigm, efficient MQTT communication, and low resources consumption makes the system cost-effective and scalable.

Keywords

IoT Solar photovoltaic monitoring Smart renewable energy Smart grid 

References

  1. 1.
    Islam, M. T., Huda, N., Abdullah, A. B., & Saidur, R. (2018). A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renewable and Sustainable Energy Reviews, 91, 987–1018.  https://doi.org/10.1016/j.rser.2018.04.097.CrossRefGoogle Scholar
  2. 2.
    Nuortimo, K., Härkönen, J., & Karvonen, E. (2018). Exploring the global media image of solar power. Renewable and Sustainable Energy Reviews, 81, 2806–2811.  https://doi.org/10.1016/j.rser.2017.06.086.CrossRefGoogle Scholar
  3. 3.
    Renewable Capacity Statistics 2018. In: /publications/2018/Mar/Renewable-Capacity-Statistics-2018. /publications/2018/Mar/Renewable-Capacity-Statistics-2018. Accessed 24 May 2018.Google Scholar
  4. 4.
    Pandey, A. K., Tyagi, V. V., Selvaraj, J. A., et al. (2016). Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renewable and Sustainable Energy Reviews, 53, 859–884.  https://doi.org/10.1016/j.rser.2015.09.043.CrossRefGoogle Scholar
  5. 5.
    Fouad, M. M., Shihata, L. A., & Morgan, E. I. (2017). An integrated review of factors influencing the perfomance of photovoltaic panels. Renewable and Sustainable Energy Reviews, 80, 1499–1511.  https://doi.org/10.1016/j.rser.2017.05.141.CrossRefGoogle Scholar
  6. 6.
    Malathy, S., & Ramaprabha, R. (2015). Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions. Renewable and Sustainable Energy Reviews, 49, 672–679.  https://doi.org/10.1016/j.rser.2015.04.165.CrossRefGoogle Scholar
  7. 7.
    Khoo, Y. S., Nobre, A., Malhotra, R., et al. (2014). Optimal orientation and tilt angle for maximizing in-plane solar irradiation for PV applications in Singapore. IEEE Journal of Photovoltaics, 4, 647–653.  https://doi.org/10.1109/JPHOTOV.2013.2292743.CrossRefGoogle Scholar
  8. 8.
    Báez-Fernández, H., Ramírez-Beltrán, N. D., & Méndez-Piñero, M. I. (2016). Selection and configuration of inverters and modules for a photovoltaic system to minimize costs. Renewable and Sustainable Energy Reviews, 58, 16–22.  https://doi.org/10.1016/j.rser.2015.12.067.CrossRefGoogle Scholar
  9. 9.
    Reshma Gopi, R., & Sreejith, S. (2018). Converter topologies in photovoltaic applications—a review. Renewable and Sustainable Energy Reviews, 94, 1–14.  https://doi.org/10.1016/j.rser.2018.05.047.CrossRefGoogle Scholar
  10. 10.
    AL-Rousan, N., Isa, N. A. M., & Desa, M. K. M. (2018). Advances in solar photovoltaic tracking systems: A review. Renewable and Sustainable Energy Reviews, 82, 2548–2569.  https://doi.org/10.1016/j.rser.2017.09.077.CrossRefGoogle Scholar
  11. 11.
    Said, Z., Arora, S., & Bellos, E. (2018). A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renewable and Sustainable Energy Reviews, 94, 302–316.  https://doi.org/10.1016/j.rser.2018.06.010.CrossRefGoogle Scholar
  12. 12.
    Belhachat, F., & Larbes, C. (2018). A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions. Renewable and Sustainable Energy Reviews, 92, 513–553.  https://doi.org/10.1016/j.rser.2018.04.094.CrossRefGoogle Scholar
  13. 13.
    Das, S. K., Verma, D., Nema, S., & Nema, R. K. (2017). Shading mitigation techniques: State-of-the-art in photovoltaic applications. Renewable and Sustainable Energy Reviews, 78, 369–390.  https://doi.org/10.1016/j.rser.2017.04.093.CrossRefGoogle Scholar
  14. 14.
    Ramli, M. A. M., Twaha, S., Ishaque, K., & Al-Turki, Y. A. (2017). A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renewable and Sustainable Energy Reviews, 67, 144–159.  https://doi.org/10.1016/j.rser.2016.09.013.CrossRefGoogle Scholar
  15. 15.
    Andenæs, E., Jelle, B. P., Ramlo, K., et al. (2018). The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Solar Energy, 159, 318–328.  https://doi.org/10.1016/j.solener.2017.10.078.CrossRefGoogle Scholar
  16. 16.
    Mukaro, R., & Carelse, X. F. (1999). A microcontroller-based data acquisition system for solar radiation and environmental monitoring. IEEE Transactions on Instrumentation and Measurement, 48, 1232–1238.  https://doi.org/10.1109/19.816142.CrossRefGoogle Scholar
  17. 17.
    Wilshaw, A. R., Pearsall, N. M., & Hill, R. (1997). Installation and operation of the first city centre PV monitoring station in the United Kingdom. Solar Energy, 59, 19–26.  https://doi.org/10.1016/S0038-092X(96)00123-5.CrossRefGoogle Scholar
  18. 18.
    Rahman, M. M., Selvaraj, J., Rahim, N. A., & Hasanuzzaman, M. (2017). Global modern monitoring systems for PV based power generation: A review. Renewable and Sustainable Energy Reviews, 10, 5–20.  https://doi.org/10.1016/j.rser.2017.10.111.Google Scholar
  19. 19.
    Shapsough, Salsabeel, Takrouri, Mohannad, Dhaouadi, Rached, & Zualkernan, Imran. (2018). An MQTT-based scalable architecture for remote monitoring and control of large-scale solar photovoltaic systems. Canada: Niagara Falls.Google Scholar
  20. 20.
    Burton, P. D., & King, B. H. (2014). Application and characterization of an artificial grime for photovoltaic soiling studies. IEEE Journal of Photovoltaics, 4, 299–303.  https://doi.org/10.1109/JPHOTOV.2013.2270343.CrossRefGoogle Scholar
  21. 21.
    Zapata, J. W., Perez, M. A., Kouro, S., et al. (2015). Design of a cleaning program for a PV plant based on analysis of energy losses. IEEE Journal of Photovoltaics, 5, 1748–1756.  https://doi.org/10.1109/JPHOTOV.2015.2478069.CrossRefGoogle Scholar
  22. 22.
    Hu, Z., Li, C., Cao, Y., et al. (2014). How smart grid contributes to energy sustainability. Energy Procedia, 61, 858–861.  https://doi.org/10.1016/j.egypro.2014.11.982.CrossRefGoogle Scholar
  23. 23.
    Liu, H., Nobre, A. M., Yang, D., et al. (2014). The impact of haze on performance ratio and short-circuit current of PV systems in Singapore. IEEE Journal of Photovoltaics, 4, 1585–1592.  https://doi.org/10.1109/JPHOTOV.2014.2346429.CrossRefGoogle Scholar
  24. 24.
    Huang, P., Zhao, W., & Li, A. (2017). The preliminary investigation on the uncertainties associated with surface solar radiation estimation in mountainous areas. IEEE Geoscience and Remote Sensing Letters, 14, 1071–1075.  https://doi.org/10.1109/LGRS.2017.2696973.CrossRefGoogle Scholar
  25. 25.
    Creayla, C. M. C., Garcia, F. C. C., & Macabebe, E. Q. B. (2017). Next day power forecast model using smart hybrid energy monitoring system and meteorological data. Procedia Computer Science, 105, 256–263.  https://doi.org/10.1016/j.procs.2017.01.219.CrossRefGoogle Scholar
  26. 26.
    Haider-e-Karar, Khuwaja, A. A., & Sattar, A. (2015). Solar power remote monitoring and controlling using Arduino, LabVIEW and web browser. In 2015 power generation system and renewable energy technologies (PGSRET) (pp. 1–4).Google Scholar
  27. 27.
    Wei, Z., Porter, J. R., & Morgan, J. A. (2014). Experiential learning of digital communication using LabVIEW. IEEE Transactions on Education, 57, 34–41.  https://doi.org/10.1109/TE.2013.2264059.CrossRefGoogle Scholar
  28. 28.
    Ya’acob, M. E., Hizam, H., & Radzi, M. A. M. (2014). Real time monitoring and analysis of tropical impact on PV performance based on LabVIEW architecture. Journal of Automation and Control Engineering, 2, 138–142.  https://doi.org/10.12720/joace.2.2.138-142.CrossRefGoogle Scholar
  29. 29.
    Ramirez, M., Muñoz, F., Diez, J. V., & Casas, C. (2012). Online monitoring system for stand-alone photovoltaic applications-analysis of system performance from monitored data. Journal of Solar Energy Engineering, 134, 034502.  https://doi.org/10.1115/1.4005448.CrossRefGoogle Scholar
  30. 30.
    Anwari, M., Dom, M. M., & Rashid, M. I. M. (2011). Small scale PV monitoring system software design. Energy Procedia, 12, 586–592.  https://doi.org/10.1016/j.egypro.2011.10.079.CrossRefGoogle Scholar
  31. 31.
    Rezk, H., Tyukhov, I., Al-Dhaifallah, M., & Tikhonov, A. (2017). Performance of data acquisition system for monitoring PV system parameters. Measurement, 104, 204–211.  https://doi.org/10.1016/j.measurement.2017.02.050.CrossRefGoogle Scholar
  32. 32.
    Papageorgas, P., Piromalis, D., Antonakoglou, K., et al. (2013). Smart solar panels: In-situ monitoring of photovoltaic panels based on wired and wireless sensor networks. Energy Procedia, 36, 535–545.  https://doi.org/10.1016/j.egypro.2013.07.062.CrossRefGoogle Scholar
  33. 33.
    Fuentes, M., Vivar, M., Burgos, J. M., et al. (2014). Design of an accurate, low-cost autonomous data logger for PV system monitoring using Arduino™ that complies with IEC standards. Solar Energy Materials and Solar Cells, 130, 529–543.  https://doi.org/10.1016/j.solmat.2014.08.008.CrossRefGoogle Scholar
  34. 34.
    Govindarajan U, K. P., Ramachandaramurthy, V. K., et al. (2018). Integrating solar photovoltaic energy conversion systems into industrial and commercial electrical energy utilization—a survey. Journal of Industrial Information Integration, 10, 39–54.  https://doi.org/10.1016/j.jii.2018.01.003.CrossRefGoogle Scholar
  35. 35.
    Eseye, A. T., Zhang, J., & Zheng, D. (2018). Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information. Renewable Energy, 118, 357–367.  https://doi.org/10.1016/j.renene.2017.11.011.CrossRefGoogle Scholar
  36. 36.
    Pasc, P.-C., & Dumitru, C.-D. (2016). scada system for solar MPPT controller monitoring. Procedia Technology, 22, 803–807.  https://doi.org/10.1016/j.protcy.2016.01.052.CrossRefGoogle Scholar
  37. 37.
    Degener, S. (2016). The Internet of Things: Enabling intelligent solar assets. Renewable Energy Focus, 17, 136–137.  https://doi.org/10.1016/j.ref.2016.06.004.CrossRefGoogle Scholar
  38. 38.
    Adhya, S., Saha, D., & Das, A. et al (2016). An IoT based smart solar photovoltaic remote monitoring and control unit. In 2016 2nd international conference on control, instrumentation, energy communication (CIEC) (pp. 432–436).Google Scholar
  39. 39.
    Jihua, Y., & Wang, W. (2014). Research and design of solar photovoltaic power generation monitoring system based on TinyOS. In 2014 9th international conference on computer science education (pp. 1020–1023).Google Scholar
  40. 40.
    Liu, G., Qiu, H., Zhu, L., & Chen, Y. (2017). Architecture and experiment of remote monitoring and operation management for multiple scales of solar power plants. In 2017 IEEE 2nd advanced information technology, electronic and automation control conference (IAEAC) (pp. 2489–2495).Google Scholar
  41. 41.
    Mashal, I., Alsaryrah, O., Chung, T.-Y., et al. (2015). Choices for interaction with things on Internet and underlying issues. Ad Hoc Networks, 28, 68–90.  https://doi.org/10.1016/j.adhoc.2014.12.006.CrossRefGoogle Scholar
  42. 42.
    Shapsough, S., Qatan, F., & Aburukba, R. et al. (2015). Smart grid cyber security: Challenges and solutions. In 2015 international conference on smart grid and clean energy technologies (ICSGCE) (pp. 170–175).Google Scholar
  43. 43.
    Yokotani, T., & Sasaki, Y. (2016). Comparison with HTTP and MQTT on required network resources for IoT. In 2016 international conference on control, electronics, renewable energy and communications (ICCEREC) (pp. 1–6).Google Scholar
  44. 44.
    Naik, N. (2017). Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In 2017 IEEE international systems engineering symposium (ISSE) (pp. 1–7).Google Scholar
  45. 45.
    Banks, A., & Gupta, R. (2014). MQTT Version 3.1. 1. OASIS Standard. Accessed 20 Jul 2018.Google Scholar
  46. 46.
    Shapsough, S., Takrouri, M., Dhaouadi, R., & Zualkernan, I. (2018). Online monitoring and evaluation of PV soiling using a smart IoT-based IV tracer. In Presented in the international conference on energy, water & environmental sciences (ICEWES), Ras Al Khaimah, UAE.Google Scholar
  47. 47.
    Dierks, T. (2008). The transport layer security (TLS) Protocol Version 1.2. https://tools.ietf.org/html/rfc5246. Accessed 19 Jun 2018.
  48. 48.
    Yocto-Watt—Isolated USB wattmeter (AC/DC). https://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-watt. Accessed 15 Aug 2018.
  49. 49.
    NMON for Linux. http://nmon.sourceforge.net/pmwiki.php. Accessed 27 Jul 2018.
  50. 50.
  51. 51.
    Wireshark. https://www.wireshark.org/. Accessed 1 Aug 2018.
  52. 52.
    Kansal, P., & Bose, A. (2012). Bandwidth and latency requirements for smart transmission grid applications. IEEE Transactions on Smart Grid, 3, 1344–1352.  https://doi.org/10.1109/TSG.2012.2197229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.American University of SharjahSharjahUAE

Personalised recommendations