Wireless Networks

, Volume 25, Issue 7, pp 3703–3714 | Cite as

An efficient data collection and load balance algorithm in wireless sensor networks

  • Danyang QinEmail author
  • Ping Ji
  • Songxiang Yang
  • Teklu Merhawit Berhane


The nature of multi-hop data transmission in wireless sensor network will cause serious load unbalance which will produce great restrains in related applications considering the limited energy resource. Relative load balance algorithms are usually performed inside the clusters without considering about the energy consumption of the whole network. A cluster-based balanced energy consumption algorithm (BECA) is proposed by introducing in multiple inter-cluster links to distribute the load, so as to achieve global load balance. Moreover, an efficient data collecting mechanism is proposed based on BECA to improve the traffic balance further. Simulating results based on NS2 show that BECA can obtain better balance properties and prolong the network lifetime effectively.


Wireless sensor network Data collection Load balance Cluster algorithm Multiple links Lifetime 



This work is supported by the National Natural Science Foundation of China (61771186), Postdoctoral Research Project of Heilongjiang Province (LBH-Q15121), Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province (UNPYSCT-2017125), Modern Sensor Technology Research and Innovation Team Foundation of Heilongjiang Province (2012TD007).


  1. 1.
    Nam, W. H., Kim, T., Hong, E. M., Choi, J. Y., et al. (2017). A wireless sensor network (WSN) application for irrigation facilities management based on information and communication technologies (ICTs). Computers and Electronics in Agriculture, 143, 185–192.CrossRefGoogle Scholar
  2. 2.
    Xie, K., Ning, X. P., Wang, X., He, S. M., & Qin, Z. (2017). An efficient privacy-preserving compressive data gathering scheme in WSNs. Information Sciences, 390, 82–94.CrossRefGoogle Scholar
  3. 3.
    Pandey, O. J., & Hegde, R. M. (2017). Node localization over small world WSNs using constrained average path length reduction. Ad Hoc Networks, 67, 87–102.CrossRefGoogle Scholar
  4. 4.
    Tawalbeh, L., Hashish, S., & Tawalbeh, H. (2017). Quality of service requirements and challenges in generic WSN infrastructures. Procedia Computer Science, 109, 1116–1121.CrossRefGoogle Scholar
  5. 5.
    Mohamed, S. M., Hamza, H. S., & Saroit, I. A. (2017). Coverage in mobile wireless sensor networks (M-WSN): a survey. Computer Communications, 110, 133–150.CrossRefGoogle Scholar
  6. 6.
    Du, T., Qu, S. N., Liu, K. Q., Xu, J. W., et al. (2016). An efficient data aggregation algorithm for WSNs based on dynamic message list. Procedia Computer Science, 83, 98–106.CrossRefGoogle Scholar
  7. 7.
    Singh, R., & Verma, A. K. (2017). Efficient image transfer over WSN using cross layer architecture. Optik-International Journal for Light and Electron Optics, 130, 499–504.CrossRefGoogle Scholar
  8. 8.
    Ran, G., Zhang, H., & Gong, S. (2010). Improving on LEACH protocol of wireless sensor networks using fuzzy logic. JICS, 7, 213–218.Google Scholar
  9. 9.
    Li, J., & Shi, X. (2007). Improved HEED routing protocol in wireless sensor networks. Computer Engineering and Applications, 43, 165–167.Google Scholar
  10. 10.
    Hu, J. H., Liu, X. C., & Tan, Z. F. (2014). Improved scheme based on PEGASIS algorithm. Microelectronics and Computer, 11, 36–40.Google Scholar
  11. 11.
    Rosset, V., Paulo, M. A., & Cespedes, J. G. (2017). Enhancing the reliability on data delivery and energy efficiency by combining swarm intelligence and community detection in large-scale WSNs. Expert Systems with Applications, 78, 89–102.CrossRefGoogle Scholar
  12. 12.
    Li, L., Sun, J., & Li, Y. S. (2017). Thermal load and bending analysis of heat collection element of direct-steam-generation parabolic-trough solar power plant. Applied Thermal Engineering, 127, 1530–1542.CrossRefGoogle Scholar
  13. 13.
    Gao, C., Zhen, Z. Y., & Gong, H. J. (2016). A self-organized search and attack algorithm for multiple unmanned aerial vehicles. Aerospace Science and Technology, 54, 229–240.CrossRefGoogle Scholar
  14. 14.
    Patil, V. U., & Kapur, A. R. (2015). Real Time alert data acquisition system USING dynamic IP embedded webserver by USB modem. Procedia Computer Science, 49, 187–193.CrossRefGoogle Scholar
  15. 15.
    Sabunas, A., & Kanapickas, A. (2017). Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software. Energy Procedia, 128, 92–99.CrossRefGoogle Scholar
  16. 16.
    Akkari, W., Bouhdid, B., & Belghith, A. (2015). LEATCH: Low energy adaptive tier clustering hierarchy. Procedia Computer Science, 52, 365–372.CrossRefGoogle Scholar
  17. 17.
    Nita, V., Narissa, W., Jeremy, C., Lindsey, W., et al. (2017). TEEN HEED: Design of a clinical-community youth diabetes prevention intervention. Contemporary Clinical Trials, 57, 23–28.CrossRefGoogle Scholar
  18. 18.
    Lo, S. M., Lin, W. H., Chen, C. Y., et al. (2017). Optimal coloring for data collection in tree-based wireless sensor networks. Theoretical Computer Science, 700, 23–36.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jasaswi, P. M., Mandal, C., & Reade, C. (2017). Distributed construction of minimum connected dominating set in wireless sensor network using two-hop information. Computer Networks, 123, 137–152.CrossRefGoogle Scholar
  20. 20.
    Zhou, X., Liu, Y. H., Wang, J., & Li, C. (2017). A density based link clustering algorithm for overlapping community detection in networks. Physica A: Statistical Mechanics and its Applications, 486, 65–78.CrossRefGoogle Scholar
  21. 21.
    Dabrowski, K. K., & Paulusma, D. (2017). Contracting bipartite graphs to paths and cycles. Information Processing Letters, 127, 37–42.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhao, D., Huang, Z. Y., Li, H. Y., et al. (2017). An improved EEMD method based on the adjustable cubic trigonometric cardinal spline interpolation. Digital Signal Processing, 64, 41–48.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Park, B., Sohn, H., & Liu, P. (2017). Accelerated noncontact laser ultrasonic scanning for damage detection using combined binary search and compressed sensing. Mechanical Systems and Signal Processing, 92, 315–333.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Heilongjiang UniversityHarbinPeople’s Republic of China
  2. 2.Dire-dawa Institute of TechnologyDire DawaEthiopia

Personalised recommendations