Wireless Networks

, Volume 25, Issue 2, pp 819–836 | Cite as

GUARD: an intrusion detection framework for routing protocols in multi-hop wireless networks

  • T. K. Thivakaran
  • T. SakthivelEmail author


The Multihop Wireless Networks have received great attention in recent years, owing to the rapid proliferation of wireless devices. The wireless routing protocols assume that the nodes are cooperating and well-behaving. However, such networks are subject to several active routing attacks such as dropping, flooding, and modification. The primary intention of such attack is to thwart the objectives of routing protocols and cause network malfunction. This state of affairs motivates the recent research towards the development of a sophisticated security framework that works well against active routing attacks. This paper proposes GUARD, an intrusion detection framework that aims at detecting the active routing attacks efficiently with a considerable reduction in energy consumption. The GUARD incorporates three mechanisms such as a Restricted Directional Watchdog Selection, a Game Design, and an Incentive Estimation. Applying the Restricted Directional Watchdog Selection makes the GUARD a lightweight intrusion detection system (IDS) model, where only a limited number of nodes turn on IDS. The GUARD utilizes non-cooperative game design and exploits the advantage of Fuzzy q-learning to determine the malicious activity. The notion of Fuzzy q-learning determines the results of the player strategies of game design to measure the appropriate reward. The GUARD framework is incorporated into the popular protocols such as AODV and LEACH to validate the effectiveness of the defense mechanism. The simulation results show that these extended protocols outperform the existing protocols in terms of attack detection accuracy, throughput, delay, and network lifetime.


Multi-hop wireless networks Intrusion detection system Watchdogs Routing attacks Non-cooperative game theory Fuzzy q-learning 


  1. 1.
    Wu, B., Chen, J., Wu, J., Cardei, M. (2007). A survey of attacks and countermeasures in mobile ad hoc networks. In Wireless network security (pp. 103–135). New York: Springer. doi: 10.1007/978-0-387-33112-6_5.
  2. 2.
    Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: a survey on recent developments and potential synergies. The Journal of Supercomputing, 68(1), 1–48. doi: 10.1007/s11227-013-1021-9.CrossRefGoogle Scholar
  3. 3.
    Ahmed, A., Bakar, K. A., Channa, M. I., & Khan, A. W. (2016). A secure routing protocol with trust and energy awareness for wireless sensor network. Mobile Networks and Applications, 21(2), 272–285. doi: 10.1007/s11036-016-0683-y.CrossRefGoogle Scholar
  4. 4.
    Mitchell, R., & Chen, I.-R. (2014). A survey of intrusion detection in wireless network applications. Computer Communications, 42, 1–23. doi: 10.1016/j.comcom.2014.01.012.CrossRefGoogle Scholar
  5. 5.
    Ghosal, A., & Halder, S. (2013). Intrusion detection in wireless sensor networks: Issues, challenges and approaches. In Wireless networks and security (pp. 329–367). New York: Springer. doi: 10.1007/978-3-642-36169-2_10.
  6. 6.
    Nadeem, A., & Howarth, M. P. (2013). A survey of MANET intrusion detection and prevention approaches for network layer attacks. IEEE Communications Surveys & Tutorials, 15(4), 2027–2045. doi: 10.1109/SURV.2013.030713.00201.CrossRefGoogle Scholar
  7. 7.
    Felegyhazi, M., & Hubaux, J.-P. (2006). Game theory in wireless networks: A tutorial. EPFL Technical report: LCA-REPORT-2006-002.Google Scholar
  8. 8.
    Paramasivan, B., & Pitchai, K. M. (2011). Comprehensive survey on game theory based intrusion detection system for mobile adhoc networks. International Journal of Computer Applications, NSC (5), pp. 24–29, doi: 10.5120/4354-055.
  9. 9.
    Shen, S., Yue, G., & Cao, Q. (2011). A survey of game theory in wireless sensor networks security. Journal of Networks, 6(3), 521–532. doi: 10.4304/jnw.6.3.521-532.CrossRefGoogle Scholar
  10. 10.
    Chen, L., & Leneutre, J. (2009). A game theoretical framework on intrusion detection in heterogeneous networks. IEEE Transactions Information Forensics and Security, 4(2), 165–178. doi: 10.1109/TIFS.2009.2019154.CrossRefGoogle Scholar
  11. 11.
    Agah, A., Das, S. K., Basu, K., & Asadi, M. (2004). Intrusion detection in sensor networks: A non-cooperative game approach. In Proceedings of third IEEE international symposium in network computing and applications (pp. 343–346). doi: 10.1109/NCA.2004.1347798.
  12. 12.
    Michiardi, P., & Molva, R. (2005). Analysis of coalition formation and cooperation strategies in mobile ad hoc networks. Ad Hoc Networks, 3(2), 193–219. doi: 10.1016/j.adhoc.2004.07.006.CrossRefGoogle Scholar
  13. 13.
    Panaousis, E. A., & Politis, C. (2011). Non-cooperative games between legitimate nodes and malicious coalitions in MANETs. In Conference proceedings of future network and mobile summit. ISBN: 978-1-905824-23-6.Google Scholar
  14. 14.
    Li, F., Yang, Y., & Wu, J. (2010). Attack and flee: Game-theory-based analysis on interactions among nodes in MANETs. IEEE Transactions on Systems, Man, and Cybernetics Part B, 40(3), 612–622. doi: 10.1109/TSMCB.2009.2035929.CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Comaniciu, C., & Man, H. (2006). A Bayesian game approach for intrusion detection in wireless ad hoc networks. In Proceedings of the workshop on game theory for communications and networks, ACM, doi: 10.1145/1190195.1190198.
  16. 16.
    Patcha, A., & Park, J.-M. (2006). A game theoretic formulation for intrusion detection in mobile ad hoc network. International Journal of Network Security, 2(2), 131–137.Google Scholar
  17. 17.
    Liu, Y., Comaniciu, C., & Man, H. (2006). Modelling misbehaviour in ad hoc networks: A game theoretic approach for intrusion detection. International Journal of Security and Networks, 1(3), 243–254. doi: 10.1504/IJSN.2006.011784.CrossRefGoogle Scholar
  18. 18.
    Koltsidas, G., & Pavlidou, F.-N. (2011). A game theoretical approach to clustering of ad-hoc and sensor networks. Telecommunication Systems, 47(2), 81–93. doi: 10.1007/s11235-010-9303-5.CrossRefGoogle Scholar
  19. 19.
    Muñoz, P., Barco, R., & de la Bandera, I. (2013). Optimization of load balancing using fuzzy Q-learning for next generation wireless networks. Expert Systems with Applications, 40(4), 984–994. doi: 10.1016/j.eswa.2012.08.071.CrossRefGoogle Scholar
  20. 20.
    Gomez, J., & Dasgupta, D. (2002). Evolving fuzzy classifiers for intrusion detection. Proceedings of the IEEE Workshop on Information Assurance, 6(3), 321–323.Google Scholar
  21. 21.
    Shamshirband, S., Patel, A., Anuar, N. B., Kiah, M. L. M., & Abraham, A. (2014). Cooperative game theoretic approach using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks. Engineering Applications of Artificial Intelligence, 32, 228–241. doi: 10.1016/j.engappai.2014.02.001.CrossRefGoogle Scholar
  22. 22.
    Shakshuki, E. M., Kang, N., & Sheltami, T. R. (2013). EAACK-a secure intrusion-detection system for MANETs. IEEE Transactions on Industrial Electronics, 60(3), 1089–1098. doi: 10.1109/TIE.2012.2196010.CrossRefGoogle Scholar
  23. 23.
    Ying, B. (2014). CUSUM-based intrusion detection mechanism for wireless sensor networks. Journal of Electrical and Computer Engineering. doi: 10.1155/2014/245938.Google Scholar
  24. 24.
    Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing. RFC 3561.Google Scholar
  25. 25.
    Heinzelman, W.R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the Hawaii international conference on system sciences. doi: 10.1109/HICSS.2000.926982.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSri Venkateshwara College of EngineeringChennaiIndia
  2. 2.Firstsoft Technologies P LtdChennaiIndia

Personalised recommendations