Advertisement

Wireless Networks

, Volume 25, Issue 2, pp 689–698 | Cite as

Cooperative decode-and-forward quadrature spatial modulation over correlated and imperfect ημ fading channels

  • Saud AlthunibatEmail author
  • Raed Mesleh
Article
  • 67 Downloads

Abstract

This paper analyzes the performance of quadrature spatial modulation (QSM) multiple-input multiple-output (MIMO) system in cooperative decode and forward (DF) networks over correlated and imperfect \(\eta \)\(\mu \) fading channels. QSM is a recently proposed propitious MIMO technique that promises significant advantages over conventional MIMO schemes including high spectral efficiency with single RF-chain transmitter and very low receiver complexity. In this study, DF cooperative communication system adopting QSM technique is presented and throughly analyzed. Single or multiple DF relays are placed between the source and the destination to cooperate in the transmission process. Only the relays that decode the signal correctly will participate in the retransmission process. The end to end performance of the considered system is analyzed over correlated and imperfect \(\eta \)\(\mu \) fading channels. The \(\eta \)\(\mu \) channel is a general fading distribution that includes some other well-known channels, such as Rayleigh and Nakagami-m, as spacial cases. Monte Carlo simulation results are presented to corroborate the accuracy of the conducted analysis. The impact of spatial correlation, imperfect channel estimation and the fading parameters \(\eta \) and \(\mu \) on the overall performance is investigated and exhaustively discussed.

Keywords

MIMO Quadrature spatial modulation (QSM) Cooperative networks Decode and forward relay networks Performance analysis 

References

  1. 1.
    Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRefGoogle Scholar
  2. 2.
    Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 64(6), 2738–2742.CrossRefGoogle Scholar
  3. 3.
    Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRefGoogle Scholar
  4. 4.
    Yigit, Z., & Basar, E. (2016). Low-complexity detection of quadrature spatial modulation. Electronics Letters, 52(20), 1729–1731.CrossRefGoogle Scholar
  5. 5.
    Xiao, L., Yang, P., Fan, S., Li, S., Song, L., & Xiao, Y. (2016). Low-complexity signal detection for large-scale quadrature spatial modulation systems. IEEE Communications Letters, 20(11), 2173–2176.CrossRefGoogle Scholar
  6. 6.
    Afana, A., Mahady, I. A., & Ikki, S. (2016). Quadrature spatial modulation in MIMO cognitive radio systems with imperfect channel estimation and limited feedback. IEEE Transactions on Communications.Google Scholar
  7. 7.
    Mesleh, R., Ikki, S. S., & Badarneh, O. S. (2016). Impact of cochannel interference on the performance of quadrature spatial modulation MIMO systems. IEEE Communications Letters, 20(10), 1927–1930.CrossRefGoogle Scholar
  8. 8.
    Mesleh, R., & Ikki, S. S. (2015, March). On the impact of imperfect channel knowledge on the performance of quadrature spatial modulation. In Wireless Communications and Networking Conference (WCNC), 2015 IEEE (pp. 534–538). IEEE.Google Scholar
  9. 9.
    Younis, A., Mesleh, R., & Haas, H. (2016). Quadrature spatial modulation performance over Nakagami-\( m \) fading channels. IEEE Transactions on Vehicular Technology, 65(12), 10227–10231.CrossRefGoogle Scholar
  10. 10.
    Badarneh, O. S., & Mesleh, R. (2016). A comprehensive framework for quadrature spatial modulation in generalized fading scenarios. IEEE Transactions on Communications, 64(7), 2961–2970.CrossRefGoogle Scholar
  11. 11.
    Afana, A., Mesleh, R., Ikki, S., & Atawi, I. E. (2016). Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying. IEEE Communications Letters, 20(2), 240–243.CrossRefGoogle Scholar
  12. 12.
    Afana, A., Ikki, S., Mesleh, R., & Atawi, I. (2016). Spectral efficient quadrature spatial modulation cooperative AF spectrum-sharing systems. IEEE Transactions on Vehicular Technology.Google Scholar
  13. 13.
    Afana, A., Erdogan, E., & Ikki, S. (2016, December). Quadrature spatial modulation for cooperative MIMO 5G wireless networks. In Globecom Workshops (GC Wkshps), 2016 IEEE (pp. 1–5). IEEE.Google Scholar
  14. 14.
    Yacoub, M. D. (2007). The distribution and the distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.CrossRefGoogle Scholar
  15. 15.
    Genc, V., Murphy, S., Yu, Y., & Murphy, J. (2008). IEEE 802.16 J relay-based wireless access networks: An overview. IEEE Wireless Communications, 15(5),Google Scholar
  16. 16.
    Beaulieu, N. C., & Hu, J. (2006). A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels. IEEE Communications Letters, 10(12),Google Scholar
  17. 17.
    Ikki, S. S., & Ahmed, M. H. (2010). Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection. IEEE Transactions on Communications, 58(1),Google Scholar
  18. 18.
    Kermoal, J. P., Schumacher, L., Pedersen, K. I., Mogensen, P. E., & Frederiksen, F. (2002). A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications, 20(6), 1211–1226.CrossRefGoogle Scholar
  19. 19.
    Van Zelst, A., & Hammerschmidt, J. S. (2002). A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels. In 27th general assembly of the International Union of Radio Science (URSI), Maastricht, the Netherlands (1461–1465).Google Scholar
  20. 20.
    Proakis, J. G. (1995). Digital communications. New York: McGraw Hill.zbMATHGoogle Scholar
  21. 21.
    Craig, J. W. (1991). A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In Military communications conference, 1991. MILCOM’91, conference record, military communications in a changing world,. IEEE (pp. 571–575). IEEE.Google Scholar
  22. 22.
    Simon, M.K., & Alouini, M., (2005). Digital communication over fading channels (2nd ed.). Wiley series in telecommunications and signal processing. Wiley. ISBN: 978-0-471-64953-3.Google Scholar
  23. 23.
    Turin, G. L. (1960). The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika, 47(1/2), 199–201.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yacoub, M. D. (2007). The distribution and the distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.CrossRefGoogle Scholar
  25. 25.
    Papazafeiropoulos, A. K., & Kotsopoulos, S. A. (2009, September). The joint envelope-phase fading distribution. In 2009 IEEE 20th international symposium on personal, indoor and mobile radio communications (pp. 919–922). IEEE.Google Scholar
  26. 26.
    Abramnowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions. Washington, DC: US Dept. of Commerce, National Bureau of Standards.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Communications EngineeringAl-Hussein Bin Talal UniversityMa’anJordan
  2. 2.School of Electrical Engineering and Information TechnologyGerman Jordanian UniversityAmmanJordan

Personalised recommendations