Wireless Networks

, Volume 25, Issue 2, pp 665–673 | Cite as

A novel scheme inspired by the compute-and-forward relaying strategy for the multiple access relay channel

  • Xabier InsaustiEmail author
  • Aitziber Sáez
  • Pedro M. Crespo


This paper proposes a novel scheme for the slow block fading Gaussian multiple access relay channel inspired by the compute-and-forward (CoF) relaying strategy. The CoF relaying strategy exploits interference to obtain significantly higher rates between users in a network by decoding linear functions of the transmitted messages. Unlike other approaches in the literature, our approach is valid for any number of transmitters and, most importantly, it only requires channel state information at the receiver side, while it still attains similar or higher rates than the other approaches found in the literature.


Multiple access relay channel Compute-and-forward Relaying Cooperative communication Interference 


  1. 1.
    Nazer, B., & Gastpar, M. (2007). Computation over multiple-access channels. IEEE Transactions on Information Theory, 53(10), 3498–3516.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
  3. 3.
    Ahlswede, R., Cai, Ning, Li, S.-Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kim, S. J., Mitran, P., & Tarokh, V. (2008). Performance bounds for bidirectional coded cooperation protocols. IEEE Transactions on Information Theory, 54(11), 5235–5241.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Avestimehr, A. S., Diggavi, S. N., & Tse, D. N. C. (2011). Wireless network information flow: A deterministic approach. IEEE Transactions on Information Theory, 57(4), 1872–1905.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lim, S., Kim, Y.-H., El Gamal, A., & Chung, S.-Y. (2011). Noisy network coding. IEEE Transactions on Information Theory, 57(5), 3132–3152.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Nazer, B., & Gastpar, M. (2011). Compute-and-forward: Harnessing interference through structured codes. IEEE Transactions on Information Theory, 57(10), 6463–6486.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Insausti, X., Camaró, F., Crespo, P. M., Beferull-Lozano, B., & Gutiérrez-Gutiérrez, J. (2013). Distributed pseudo-gossip algorithm and finite-length computational codes for efficient in-network subspace projection. IEEE Journal of Selected Topics in Signal Processing, 7(2), 163–174.CrossRefGoogle Scholar
  9. 9.
    Song, Y., & Devroye, N. (2013). Lattice codes for the gaussian relay channel: Decode-and-forward and compress-and-forward. IEEE Transactions on Information Theory, 59(8), 4927–4948.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hong, S.-N., & Caire, G. (2013). Compute-and-forward strategies for cooperative distributed antenna systems. IEEE Transactions on Information Theory, 59(9), 5227–5243.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sankar, L., Liang, Y., Mandayam, N. B., & Poor, H. V. (2011). Fading multiple access relay channels: Achievable rates and opportunistic scheduling. IEEE Transactions on Information Theory, 57(4), 1911–1931.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hernaez, M., Crespo, P. M., & Del Ser, J. (2013). On the design of a novel joint network-channel coding scheme for the multiple access relay channel. IEEE Journal on Selected Areas in Communications, 31(8), 1368–1378.CrossRefGoogle Scholar
  14. 14.
    El Soussi, M., Zaidi, A., & Vandendorpe, L. (2014). Compute-and-forward on a multiaccess relay channel: Coding and symmetric-rate optimization. IEEE Transactions on Wireless Communications, 13(4), 1932–1947.CrossRefGoogle Scholar
  15. 15.
    Erez, U., Litsyn, S., & Zamir, R. (2005). Lattices which are good for (almost) everything. IEEE Transactions on Information Theory, 51(10), 3401–3416.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Feng, C., Silva, D., & Kschischang, F. R. (2013). An algebraic approach to physical-layer network coding. IEEE Transactions on Information Theory, 59(11), 7576–7596.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hern, B., & Narayanan, K. R. (2013). Multilevel coding schemes for compute-and-forward with flexible decoding. IEEE Transactions on Information Theory, 59(11), 7613–7631.CrossRefGoogle Scholar
  18. 18.
    Wei, L., & Chen, W. (2012). Compute-and-forward network coding design over multi-source multi-relay channels. IEEE Transactions on Wireless Communications, 11(9), 3348–3357.CrossRefGoogle Scholar
  19. 19.
    Ordentlich, O., Zhan, J., Erez, U., Gastpar, M., & Nazer, B. (2011). Practical code design for compute-and-forward. In IEEE International Symposium on Information Theory Proceedings (ISIT), 2011 (pp. 1876–1880).Google Scholar
  20. 20.
    Vem, A., Huang, Y.-C., Narayanan, K. R., & Pfister, H. D. (2014). Multilevel lattices based on spatially-coupled LDPC codes with applications. In IEEE International Symposium on Information Theory (ISIT), 2014 (pp 2336–2340).Google Scholar
  21. 21.
    Hong, S.-N., & Caire, G. (2011). Quantized compute and forward: A low-complexity architecture for distributed antenna systems. In IEEE Information Theory Workshop (ITW), 2011 (pp. 420–424).Google Scholar
  22. 22.
    Tunali, N. E., & Narayanan, K. R. (2011). Concatenated signal codes with applications to compute and forward. In IEEE Global Telecommunications Conference (GLOBECOM 2011), 2011 (pp. 1–5).Google Scholar
  23. 23.
    El Gamal, A., & Kim, Y.-H. (2012). Network information theory. New York, NY: Cambridge University Press.Google Scholar
  24. 24.
    Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. 25.
    Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication., Wiley series in telecommunications Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  26. 26.
    Nazer, B. (2012). Successive compute-and-forward. In Proceedings of the international Zurich seminar on communications (pp. 103–106).Google Scholar
  27. 27.
    Tseng, T. Y., Lee, C. P., Lin, S. C., Su, H. J. (2014). Non-orthogonal compute-and-forward with joint lattice decoding for the multiple-access relay channel. In 2014 IEEE Globecom Workshops (GC Wkshps) (pp. 924–929).Google Scholar
  28. 28.
    Aguerri, I. E., & Zaidi, A. (2016). Lossy compression for compute-and-forward in limited backhaul uplink multicell processing. IEEE Transactions on Communications, 64(12), 5227–5238.CrossRefGoogle Scholar
  29. 29.
    Wei, S., Li, J., Chen, W., Zheng, L., & Su, H. (2015). Design of generalized analog network coding for a multiple-access relay channel. IEEE Transactions on Communications, 63(1), 170–185.Google Scholar
  30. 30.
    Hejazi, M., Azimi-Abarghouyi, S. M., Makki, B., Nasiri-Kenari, M., & Svensson, T. (2016). Robust successive compute-and-forward over multiuser multirelay networks. IEEE Transactions on Vehicular Technology, 65(10), 8112–8129.CrossRefGoogle Scholar
  31. 31.
    Najafi, H., Damen, M. O., & Hjorungnes, A. (2013). Asynchronous compute-and-forward. IEEE Transactions on Communications, 61(7), 2704–2712.CrossRefGoogle Scholar
  32. 32.
    Zhang, H., Mehta, N. B., Molisch, A. F., Zhang, J., & Dai, S. H. (2008). Asynchronous interference mitigation in cooperative base station systems. IEEE Transactions on Wireless Communications, 7(1), 155–165.CrossRefGoogle Scholar
  33. 33.
    Wei, S. (2007). Diversity multiplexing tradeoff of asynchronous cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 53(11), 4150–4172.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Holtzman, J. M., & Zorzi, M. (2006). Advances in wireless communications., The springer international series in engineering and computer science New York: Springer.Google Scholar
  35. 35.
    Zhang, Y., Chen, H. H., & Guizani, M. (2009). Cooperative wireless communications., Wireless networks and mobile communications Boca Raton: CRC Press.CrossRefGoogle Scholar
  36. 36.
    Song, L., & Shen, J. (2010). Evolved cellular network planning and optimization for UMTS and LTE. Boca Raton: CRC Press.CrossRefGoogle Scholar
  37. 37.
    Braithwaite, C., & Scott, M. (2003). UMTS network planning and development: Design and implementation of the 3G CDMA infrastructure. Amsterdam: Elsevier Science.Google Scholar
  38. 38.
    Lawler, E. L., & Wood, D. E. (1966). Branch-and-bound methods: A survey. Operations Research, 14(4), 699–719.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wolsey, L. A. (1998). Integer programming. New Jersey: Wiley.zbMATHGoogle Scholar
  40. 40.
    Liu, W., & Ling, C. (2016). Efficient integer coefficient search for compute-and-forward. IEEE Transactions on Wireless Communications, 15(12), 8039–8050.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Tecnun (University of Navarra)Donostia-San SebastiánSpain

Personalised recommendations