Advertisement

Wireless Networks

, Volume 25, Issue 2, pp 625–635 | Cite as

DIVA: a distributed divergecast scheduling algorithm for IEEE 802.15.4e TSCH networks

  • Alper K. DemirEmail author
  • Sedat Bilgili
Article

Abstract

IEEE standardized a highly efficient, low power, reliable, deterministic and time–frequency enabled medium access control protocol, IEEE 802.15.4e time slotted channel hopping (TSCH) as an amendment to the medium access control (MAC) protocol defined by the IEEE 802.15.4 standard. Once a communication schedule is built, the IEEE 802.15.4e TSCH is able to execute such a communication schedule. IEEE 802.15.4e TSCH standard lea ves out of scope defining how that communication schedule is built, updated and maintained. In order to fill this gap, we introduce such a scheduling algorithm, called as DIVA. DIVA is specifically designed for IEEE 8092.15.4e TSCH networks. It is a totally distributed scheduling algorithm for divergecast traffic where divergecast means that traffic flows in all directions in contrast to convergecast where traffic flows from leave nodes to root. In order to gain more comprehension about DIVA, we conducted extensive simulations. We also compared DIVA with Berkeley’s Aloha-based algorithm.

Keywords

IEEE 802.15.4 IEEE 802.15.4e TSCH IETF 6TiSCH Scheduling algorithms Wireless sensor networks Internet of things 

References

  1. 1.
    Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: A survey. Information Systems Frontiers, 17(2), 243–259.CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58(1), 49–69.CrossRefGoogle Scholar
  3. 3.
    Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks towards the internet of things: A survey. In 2011 19th international conference on software, telecommunications and computer networks (SoftCOM). IEEE (pp. 1–6).Google Scholar
  4. 4.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefzbMATHGoogle Scholar
  5. 5.
    Kortuem, G., Kawsar, F., Fitton, D., & Sundramoorthy, V. (2010). Smart objects as building blocks for the internet of things. IEEE Internet Computing, 14(1), 44–51.CrossRefGoogle Scholar
  6. 6.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.CrossRefGoogle Scholar
  7. 7.
    IEEE std. 802.15.4. part. 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE standard for information technology, September 2006.Google Scholar
  8. 8.
    IEEE draft std. 802.15.4e. part. 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs) amendment 1: Add MAC enhancements for industrial applications and Cwpan. IEEE standard for information technology, March 2010.Google Scholar
  9. 9.
    Palattella, M. R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L. A., Boggia, G., et al. (2013). Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys & Tutorials, 15(3), 1389–1406.CrossRefGoogle Scholar
  10. 10.
    Using IEEE 802.15.4e time-slotted channel hopping (TSCH) in the internet of things (IOT): Problem statement. https://tools.ietf.org/html/rfc7554.
  11. 11.
    Dujovne, D., Watteyne, T., Vilajosana, X., & Thubert, P. (2014). 6TiSCH: Deterministic IP-enabled industrial internet (of things). IEEE Communications Magazine, 52(12), 36–41.CrossRefGoogle Scholar
  12. 12.
    Thubert, P., Watteyne, T., Palattella, M. R., Vilajosana, X., & Wang, Q. (2013). IETF 6TSCH: Combining IPv6 connectivity with industrial performance. In 2013 seventh international conference on innovative mobile and internet services in ubiquitous computing (IMIS).IEEE (pp. 541–546).Google Scholar
  13. 13.
  14. 14.
    Youn, S. (2013). A comparison of clock synchronization in wireless sensor networks. International Journal of Distributed Sensor Networks, 9, 532986.CrossRefGoogle Scholar
  15. 15.
    Stanislowski, D., Vilajosana, X., Wang, Q., Watteyne, T., & Pister, K. S. (2014). Adaptive synchronization in IEEE802. 15.4 e networks. IEEE Transactions on Industrial Informatics, 10(1), 795–802.CrossRefGoogle Scholar
  16. 16.
    Diab, R., Chalhoub, G., & Misson, M. (2013). Overview on multi-channel communications in wireless sensor networks. Network Protocols and Algorithms, 5(3), 112–135.CrossRefGoogle Scholar
  17. 17.
    Soua, R., & Minet, P. (2015). Multichannel assignment protocols in wireless sensor networks: A comprehensive survey. Pervasive and Mobile Computing, 16, 2–21.CrossRefGoogle Scholar
  18. 18.
    Pister, K. S. J., & Doherty, L. (2008). TSMP: Time synchronized mesh protocol. In Proceedings of the IASTED International Symposium (Vol. 635).Google Scholar
  19. 19.
    Hart communication protocol and foundation. http://www.hartcomm2.org.
  20. 20.
    Song, J., Han, S., Mok, A. K., Chen, D., Lucas, M., & Nixon, M. (2008). WirelessHART: Applying wireless technology in real-time industrial process control. InIEEE real-time and embedded technology and applications symposium, 2008.RTAS’08.IEEE (pp. 377–386).Google Scholar
  21. 21.
    International society of automation. ISA-100.11a wireless systems for industrial automation: Process control and related applications. ISA, 2009.Google Scholar
  22. 22.
    Wu, Y., Stankovic, J. A., He, T., & Lin, S. (2008). Realistic and efficient multi-channel communications in wireless sensor networks. In INFOCOM 2008. The 27th conference on computer communications. IEEE.Google Scholar
  23. 23.
    Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2011). EM-MAC: A dynamic multichannel energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the twelfth ACM international symposium on mobile ad hoc networking and computing. ACM (p. 23).Google Scholar
  24. 24.
    Incel, Ö. D., Ghosh, A., Krishnamachari, B., & Chintalapudi, K. (2012). Fast data collection in tree-based wireless sensor networks. IEEE Transactions on Mobile Computing, 11(1), 86–99.CrossRefGoogle Scholar
  25. 25.
    Sahraoui, M., & Bilami, A. (2012). Multi-channel scheduling protocol for wireless personal area networks IEEE802. 15.4. Journal of Networking Technology, 3(2), 57.Google Scholar
  26. 26.
    Soua, R., Minet, P., & Livolant, E. (2012). Modesa: An optimized multichannel slot assignment for raw data convergecast in wireless sensor networks. In 2012 IEEE 31st international performance computing and communications conference (IPCCC). IEEE (pp. 91–100).Google Scholar
  27. 27.
    Palattella, M. R., Accettura, N., Grieco, L. A., Boggia, G., Dohler, M., & Engel, T. (2013). On optimal scheduling in duty-cycled industrial iot applications using IEEE802. 15.4 e TSCH. IEEE Sensors Journal, 13(10), 3655–3666.CrossRefGoogle Scholar
  28. 28.
    Han, B., Kumar, V. A., Marathe, M. V., Parthasarathy, S., & Srinivasan, A. (2009). Distributed strategies for channel allocation and scheduling in software-defined radio networks. In INFOCOM 2009, IEEE. IEEE (pp. 1521–1529).Google Scholar
  29. 29.
    Incel, O. D., van Hoesel, L., Jansen, P., & Havinga, P. (2011). MC-LMAC: A multi-channel mac protocol for wireless sensor networks. Ad Hoc Networks, 9(1), 73–94.CrossRefGoogle Scholar
  30. 30.
    Zand, P., Chatterjea, S., Ketema, J., & Havinga, P. (2012). A distributed scheduling algorithm for real-time (D-SAR) industrial wireless sensor and actuator networks. In 2012 IEEE 17th conference on emerging technologies & factory automation (ETFA). IEEE (pp. 1–4).Google Scholar
  31. 31.
    Buranapanichkit, D., & Andreopoulos, Y. (2012). Distributed time–frequency division multiple access protocol for wireless sensor networks. IEEE Wireless Communications Letters, 1(5), 440–443.CrossRefGoogle Scholar
  32. 32.
    Soua, R., Livolant, E., & Minet, P. (2013). An adaptive strategy for an optimized collision-free slot assignment in multichannel wireless sensor networks. Journal of Sensor and Actuator Networks, 2(3), 449–485.CrossRefGoogle Scholar
  33. 33.
    Accettura, N., Vogli, E., Palattella, M. R., Grieco, L. A., Boggia, G., & Dohler, M. (2015). Decentralized traffic aware scheduling in 6TiSCH networks: Design and experimental evaluation. IEEE Internet of Things Journal, 2(6), 455–470.CrossRefGoogle Scholar
  34. 34.
    Morell, A., Vilajosana, X., Vicario, J. L., & Watteyne, T. (2013). Label switching over IEEE802. 15.4 e networks. Transactions on Emerging Telecommunications Technologies, 24(5), 458–475.CrossRefGoogle Scholar
  35. 35.
    Soua, R., Minet, P., & Livolant, E. (2015). Wave: A distributed scheduling algorithm for convergecast in IEEE 802.15. 4e TSCH networks. Transactions on Emerging Telecommunications Technologies, 27, 557–575.CrossRefGoogle Scholar
  36. 36.
    Soua, R., Minet, P., & Livolant, E. (2015). DISCA: A distributed scheduling for convergecast in multichannel wireless sensor networks. In 2015 IFIP/IEEE international symposium on integrated network management (IM). IEEE (pp. 156–164).Google Scholar
  37. 37.
    Wang, W. P., & Hwang, R. H. (2015). A distributed scheduling algorithm for IEEE 802.15.4e networks. In 2015 IEEE international conference on smart city. IEEE (pp. 95–100).Google Scholar
  38. 38.
    Tinka, A., Watteyne, T., & Pister, K. (2010). A decentralized scheduling algorithm for time synchronized channel hopping. In Ad Hoc Networks, Springer (pp. 201–216).Google Scholar
  39. 39.
    Du, P., & Roussos, G. (2012). Adaptive time slotted channel hopping for wireless sensor networks. In 2012 4th computer science and electronic engineering conference (CEEC).IEEE (pp. 29–34).Google Scholar
  40. 40.
    Shih, C. F., Xhafa, A. E., & Zhou, J. (2015). Practical frequency hopping sequence design for interference avoidance in 802.15. 4e TSCH networks. In 2015 IEEE international conference on communications (ICC). IEEE (pp. 6494–6499).Google Scholar
  41. 41.
  42. 42.
  43. 43.
  44. 44.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Adana Science and Technology UniversityAdanaTurkey

Personalised recommendations