Advertisement

Wireless Networks

, Volume 24, Issue 6, pp 1905–1914 | Cite as

Capacity analysis for LOS millimeter–wave quadrature spatial modulation

  • Raed MeslehEmail author
  • Abdelhamid Younis
Article

Abstract

Capacity analysis for millimeter-wave (mmWave) quadrature spatial modulation (QSM) multiple-input multiple-output (MIMO) system is presented in this paper. QSM is a new MIMO technique proposed to enhance the performance of conventional spatial modulation while retaining almost all its inherent advantages. Furthermore, mmWave utilizes a license-free wide-bandwidth spectrum and is a very promising candidate for future wireless systems. Detailed and novel analysis of the mutual information and the capacity for line of sight (LOS) mmWave-QSM system are presented in this study. The conditions under which theoretical capacity can be achieved are derived and discussed. Also, mmWave channel design is conducted and a novel algorithm is proposed to overcome existing limitation for unbalanced MIMO configurations, i.e., when the number of receive antennas is less than that of the transmit antennas. Monte Carlo simulation results are provided to corroborate derived formulas. It is shown that significant performance enhancements can be achieved under different system and channel configurations.

Keywords

Quadrature spatial modulation (QSM) Millimeter–wave (mmWave) Capacity analysis 

References

  1. 1.
    Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRefGoogle Scholar
  2. 2.
    Boccardi, F., Heath, R., Lozano, A., Marzetta, T., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.CrossRefGoogle Scholar
  3. 3.
    Samimi, M. K., & Rappaport, T. S. (2015). 3-D statistical channel model for millimeter-wave outdoor mobile broadband communications. In Proceeding of the IEEE international conference on communication.Google Scholar
  4. 4.
    Liu, P., Renzo, M., & Springer, A. (2016). Line-of-sight (los) spatial modulation (sm) for indoor mmwave communication at 60 GHz. IEEE Communications Magazine, 99, 1–1.Google Scholar
  5. 5.
    mmWave WPAN (IEEE 802.15.3c-2009), IEEE Std., Oct. 2009, Amendment to IEEE Std 802.15.3-2003.Google Scholar
  6. 6.
    WiGig (IEEE 802.11ad), IEEE Std., (2012).Google Scholar
  7. 7.
    WirelessHD, Std., (2010). [Online]. http://www.wirelesshd.org/.
  8. 8.
    Li, Q., Li, G., Lee, W., il Lee, M., Mazzarese, D., & Clerckx, B. (2010). MIMO techniques in WiMAX and LTE: A feature overview. IEEE Communications Magazine, 48(5), 86–92.CrossRefGoogle Scholar
  9. 9.
    Osseiran, A., Stankovic, V., Jorswieck, E., Wild, T., Fuchs, M., & Olsson, M. (2007). A MIMO framework for 4G systems: WINNER concept and results. In Proceedings of IEEE workshop signal processing advances wireless communications (SPAWC 2007), Helsinki, Finland.Google Scholar
  10. 10.
    Mietzner, J., Schober, R., Lampe, L., Gerstacker, W. H., & Höeher, P. A. (2009). Multiple-antenna techniques for wireless communications—A comprehensive literature survey. IEEE Communications Magazine, 11(2), 87–105.Google Scholar
  11. 11.
    Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2013) Quadrature spatial modulation system, U.S. Patent 61/897,894.Google Scholar
  12. 12.
    Mesleh, R., Ikki, S., & Aggoune, H. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 64(6), 2738–2742.CrossRefGoogle Scholar
  13. 13.
    Mesleh, R., Haas, H., Sinanović, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRefGoogle Scholar
  14. 14.
    Jeganathan, J., Ghrayeb, A., Szczecinski, L., & Ceron, A. (2009). Space shift keying modulation for MIMO channels. IEEE Transactions on Vehicular Technology, 8(7), 3692–3703.Google Scholar
  15. 15.
    Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2014). Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. IEEE Transactions on Vehicular Technology, 102(1), 56–103.Google Scholar
  16. 16.
    Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2014). Quadrature spatial modulation-performance analysis and impact of imperfect channel knowledge. Transactions on Emerging Telecommunications Technologies,. doi: 10.1002/ett.2905.Google Scholar
  17. 17.
    Younis, A., Mesleh, R., & Haas, H. (2015). Quadrature spatial modulation performance over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 99, 1.Google Scholar
  18. 18.
    Zheng, B., Chen, F., Wen, M., Ji, F., Yu, H., & Liu, Y. (2015). Low-complexity ml detector and performance analysis for ofdm with in-phase/quadrature index modulation. IEEE Transactions on Vehicular Technology, 19(11), 1893–1896.Google Scholar
  19. 19.
    Li, J., Wen, M., Cheng, X., Yan, Y., Song, S., & Lee, M. H. (2016). Generalised pre-coding aided quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 99, 1–1.Google Scholar
  20. 20.
    Kim, S. (2016). Antenna selection schemes in quadrature spatial modulation systems. ETRI Journal,. doi: 10.4218/etrij.16.0115.0986.Google Scholar
  21. 21.
    Afana, A., Atawi, I., Ikki, S., & Mesleh, R. (2015). Energy efficient quadrature spatial modulation MIMO cognitive radio systems with imperfect channel estimation. In IEEE international conference on ubiquitous wireless broadband (ICUWB) (pp. 1–5).Google Scholar
  22. 22.
    Afana, A., Mesleh, R., Ikki, S., & Atawi, I. (2015). Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying. IEEE Transactions on Vehicular Technology, 99, 1–1.Google Scholar
  23. 23.
    Basnayaka, D., & Haas, H. (2015). Spatial modulation for massive MIMO. In Proceedings of IEEE international conference on communication (ICC) (pp. 1945–1950).Google Scholar
  24. 24.
    Yang, Y., & Jiao, B. (2008). Information-guided channel-hopping for high data rate wireless communication. IEEE Communications Letters, 12(4), 225–227.CrossRefGoogle Scholar
  25. 25.
    Yang, Y., & Jiao, B. (Apr. 2008). On the capacity of information-guided channel-hopping in multi-antenna system. In IEEE INFOCOM Workshops 2008 (pp. 1–5).Google Scholar
  26. 26.
    Yonghong, H., Pichao, W., Xiang, W., Xiaoming, Z., & Chunping, H. (2013). Ergodic capacity analysis of spatially modulated systems. IEEE Communications Letters, 10(7), 118–125.Google Scholar
  27. 27.
    Younis, A., Basnayaka, D. A., & Haas, H. (2014). Performance analysis for generalised spatial modulation. In Proceedings of European wireless conference (EW 2014), Barcelona, Spain, 14–16 (pp. 207–212).Google Scholar
  28. 28.
    Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave MIMO: Feasibility and performance. IEEE Transactions on Wireless Communications, 10(12), 4150–4160.CrossRefGoogle Scholar
  29. 29.
    Gesbert, D., Bolcskei, H., Gore, D., & Paulraj, A. (2002). Outdoor MIMO wireless channels: Models and performance prediction. IEEE Transactions on Wireless Communications, 50(12), 1926–1934.CrossRefGoogle Scholar
  30. 30.
    Torkildson, E., Zhang, H., & Madhow, U. (2010). Channel modeling for millimeter wave MIMO. In Information theory and applications workshop (ITA) (pp. 1–8).Google Scholar
  31. 31.
    Kühn, V. (2006). Wireless communications over MIMO channels. New York: Wiley.CrossRefGoogle Scholar
  32. 32.
    Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal 27:379–423 & 623–656.Google Scholar
  33. 33.
    Simon, M. K., & Alouini, M. (2005). Digital communication over fading channels, 2nd Edn. In Telecommunications and signal processing. Wiley. ISBN: 978-0-471-64953-3.Google Scholar
  34. 34.
    Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in circular statistics, ser. multivariate analysis. Singapore: World Scientific Pub Co Inc. vol. 5.Google Scholar
  35. 35.
    Liu, P., & Springer, A. (2015). Space shift keying for LOS communication at mmWave frequencies. IEEE Transactions on Wireless Communications, 4(2), 121–124.CrossRefGoogle Scholar
  36. 36.
    Calderbank, A., & Ozarow, L. (1990). Nonequiprobable signaling on the Gaussian channel. IEEE Transactions on Information Theory, 36(4), 726–740.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Electrical and Communications Engineering Department, School of Electrical Engineering and Information TechnologyGerman Jordanian UniversityAmmanJordan
  2. 2.Electrical and Electronics Engineering Department, Faculty of EngineeringUniversity of BenghaziBenghaziLibya

Personalised recommendations