Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A survey of clustering algorithms for cognitive radio ad hoc networks

  • 499 Accesses

  • 6 Citations

Abstract

The dynamic spectrum nature of cognitive radio challenges the connectivity and the stability of cognitive radio ad hoc networks (CRAHNs). Clustering is considered as an appropriate technique to overcome these issues. Various algorithms for clustering formation in CRAHN have been proposed, in which different system models and metrics are considered. This paper introduces an extensive survey of the most important published algorithms. This survey classifies the proposed algorithms based on their objectives. Moreover, it presents a detailed description of their techniques, evaluations of their performance, and discussion of the features and shortcomings of each algorithm. Furthermore, it provides and discusses the open issues for future research.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Federal Communications Commission. (2002, November). Spectrum policy tasks force report. ET Docket No. 02-135.

  2. 2.

    Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

  3. 3.

    Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

  4. 4.

    Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.

  5. 5.

    Chen, T., Zhang, H., Maggio, G. M., & Chlamtac, I. (2007, April). CogMesh: A cluster-based cognitive radio network. In 2007 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 168–178). IEEE.

  6. 6.

    Chinara, S., & Rath, S. K. (2009). A survey on one-hop clustering algorithms in mobile ad hoc networks. Journal of Network and Systems Management, 17(1–2), 183–207.

  7. 7.

    Kawadia, V., & Kumar, P. R. (2003, March). Power control and clustering in ad hoc networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 1, pp. 459–469). IEEE.

  8. 8.

    Liu, C. H., Rong, B., & Cui, S. (2015). Optimal discrete power control in poisson-clustered ad hoc networks. IEEE Transactions on Wireless Communications, 14(1), 138–151.

  9. 9.

    Ephremides, A., Wieselthier, J. E., & Baker, D. J. (1987). A design concept for reliable mobile radio networks with frequency hopping signaling. Proceedings of the IEEE, 75(1), 56–73.

  10. 10.

    Basu, P., Khan, N., & Little, T. D. (2001, April). A mobility based metric for clustering in mobile ad hoc networks. In 2001 international conference on distributed computing systems workshop (pp. 413–418). IEEE.

  11. 11.

    Konstantopoulos, C., Gavalas, D., & Pantziou, G. (2008). Clustering in mobile ad hoc networks through neighborhood stability-based mobility prediction. Computer Networks, 52(9), 1797–1824.

  12. 12.

    Ni, M., Zhong, Z., & Zhao, D. (2011). MPBC: A mobility prediction-based clustering scheme for ad hoc networks. IEEE Transactions on Vehicular Technology, 60(9), 4549–4559.

  13. 13.

    Hussein, A. H., Salem, A. O. A., & Yousef, S. (2008, June). A flexible weighted clustering algorithm based on battery power for mobile ad hoc networks. In 2008 IEEE international symposium on industrial electronics (pp. 2102–2107). IEEE.

  14. 14.

    Leu, J. J. Y., Tsai, M. H., Chiang, T. C., & Huang, Y. M. (2006, September). Adaptive power-aware clustering and multicasting protocol for mobile ad hoc networks. In International conference on ubiquitous intelligence and computing (pp. 331–340). Berlin, Heidelberg: Springer.

  15. 15.

    Fathi, A., & Taheri, H. (2010, July). Enhance Topology Control Protocol (ECEC) to conserve energy based clustering in wireless ad hoc networks. In 2010 3rd IEEE international conference on computer science and information technology (ICCSIT) (Vol. 9, pp. 356–360). IEEE.

  16. 16.

    Karaoglu, B., & Heinzelman, W. (2015). Cooperative load balancing and dynamic channel allocation for cluster-based mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(5), 951–963.

  17. 17.

    Pandey, A., & Lim, J. S. (2010, May). Ctb-mac: Cluster-based tdma broadcast mac protocol for mobile ad-hoc network. In 2010 5th international conference on future information technology (pp. 1–6). IEEE.

  18. 18.

    Natesapillai, K., Palanisamy, V., & Duraiswamy, K. (2009). Reducing broadcast overhead using clustering based broadcast mechanism in mobile ad hoc network. Journal of Computer Science, 5(8), 548–556.

  19. 19.

    Pathak, S., & Jain, S. (2016). A novel weight based clustering algorithm for routing in MANET. Wireless Networks, 22(8), 2695–2704.

  20. 20.

    Kanakala, S., Ananthula, V. R., & Vempaty, P. (2014). Energy-efficient cluster based routing protocol in mobile ad hoc networks using network coding. Journal of Computer Networks and Communications, 2014, 351020. doi:10.1155/2014/351020.

  21. 21.

    Kumar, R., Verma, P., & Singh, Y. (2013). Mobile ad hoc networks and it’s routing protocols. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 7(8), 1151–1160.

  22. 22.

    Liu, W., Nishiyama, H., Ansari, N., Yang, J., & Kato, N. (2013). Cluster-based certificate revocation with vindication capability for mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 24(2), 239–249.

  23. 23.

    Jarang, M. R., & Nimbalkar, M. V. (2015, October). Implementation of cluster based certificate revocation in mobile ad hoc networks. In 2015 international conference on green computing and internet of things (ICGCIoT) (pp. 610–615). IEEE.

  24. 24.

    Hafeez, K. A., Zhao, L., Liao, Z., & Ma, B. N. W. (2012, June). A fuzzy-logic-based cluster head selection algorithm in VANETs. In 2012 IEEE international conference on communications (ICC) (pp. 203–207). IEEE.

  25. 25.

    Hassanabadi, B., Shea, C., Zhang, L., & Valaee, S. (2014). Clustering in vehicular ad hoc networks using affinity propagation. Ad Hoc Networks, 13, 535–548.

  26. 26.

    Chen, Y., Fang, M., Shi, S., Guo, W., & Zheng, X. (2015). Distributed multi-hop clustering algorithm for VANETs based on neighborhood follow. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–12.

  27. 27.

    Omar, H. A., Zhuang, W., & Li, L. (2013). VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Transactions on Mobile Computing, 12(9), 1724–1736.

  28. 28.

    Bharati, S., & Zhuang, W. (2013). CAH-MAC: Cooperative ADHOC MAC for vehicular networks. IEEE Journal on Selected Areas in Communications, 31(9), 470–479.

  29. 29.

    Hadded, M., Muhlethaler, P., Laouiti, A., Zagrouba, R., & Saidane, L. A. (2015). TDMA-based MAC protocols for vehicular ad hoc networks: A survey, qualitative analysis, and open research issues. IEEE Communications Surveys & Tutorials, 17(4), 2461–2492.

  30. 30.

    Bhaumik, M., DasGupta, S., & Saha, S. (2012). Affinity based clustering routing protocol for vehicular ad hoc networks. Procedia Engineering, 38, 673–679.

  31. 31.

    Mohammed Nasr, M. M., Abdelgader, A. M. S., Wang, Z. G., & Shen, L. F. (2016). VANET clustering based routing protocol suitable for deserts. Sensors, 16(4), 478.

  32. 32.

    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

  33. 33.

    Lin, C., Wu, G., Xia, F., Li, M., Yao, L., & Pei, Z. (2012). Energy efficient ant colony algorithms for data aggregation in wireless sensor networks. Journal of Computer and System Sciences, 78(6), 1686–1702.

  34. 34.

    Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

  35. 35.

    Yu, J., Feng, L., Jia, L., Gu, X., & Yu, D. (2014). A local energy consumption prediction-based clustering protocol for wireless sensor networks. Sensors, 14(12), 23017–23040.

  36. 36.

    Siavoshi, S., Kavian, Y. S., & Sharif, H. (2016). Load-balanced energy efficient clustering protocol for wireless sensor networks. IET Wireless Sensor Systems, 6(3), 67–73.

  37. 37.

    Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86.

  38. 38.

    Tan, R., Xing, G., Liu, B., Wang, J., & Jia, X. (2012). Exploiting data fusion to improve the coverage of wireless sensor networks. IEEE/ACM Transactions on Networking, 20(2), 450–462.

  39. 39.

    Lin, C., Wu, G., Obaidat, M. S., & Yu, C. W. (2016). Clustering and splitting charging algorithms for large scaled wireless rechargeable sensor networks. Journal of Systems and Software, 113, 381–394.

  40. 40.

    Sun, C., Zhang, W., & Letaief, K. B. (2007, June). Cluster-based cooperative spectrum sensing in cognitive radio systems. In 2007 IEEE international conference on communications (pp. 2511–2515). IEEE.

  41. 41.

    Guo, C., Peng, T., Xu, S., Wang, H., & Wang, W. (2009, April). Cooperative spectrum sensing with cluster-based architecture in cognitive radio networks. In IEEE 69th Vehicular Technology Conference, 2009. VTC Spring 2009 (pp. 1–5). IEEE.

  42. 42.

    Nguyen-Thanh, N., & Koo, I. (2013). A cluster-based selective cooperative spectrum sensing scheme in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–9.

  43. 43.

    Zhang, W., Yang, Y., & Yeo, C. K. (2015). Cluster-based cooperative spectrum sensing assignment strategy for heterogeneous cognitive radio network. IEEE Transactions on Vehicular Technology, 64(6), 2637–2647.

  44. 44.

    Wang, Y., Lin, W., Huang, Y., & Ni, W. (2014). Optimization of cluster-based cooperative spectrum sensing scheme in cognitive radio networks with soft data fusion. Wireless Personal Communications, 77(4), 2871–2888.

  45. 45.

    Liu, S., Lazos, L., & Krunz, M. (2012). Cluster-based control channel allocation in opportunistic cognitive radio networks. IEEE Transactions on Mobile Computing, 11(10), 1436–1449.

  46. 46.

    Lazos, L., Liu, S., & Krunz, M. (2009, June). Spectrum opportunity-based control channel assignment in cognitive radio networks. In 2009 6th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 1–9). IEEE.

  47. 47.

    Zhao, J., Zheng, H., & Yang, G. H. (2005, November). Distributed coordination in dynamic spectrum allocation networks. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 259–268). IEEE.

  48. 48.

    Li, D., & Gross, J. (2011, June). Robust clustering of ad-hoc cognitive radio networks under opportunistic spectrum access. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  49. 49.

    Zhao, J., Zheng, H., & Yang, G. H. (2007). Spectrum sharing through distributed coordination in dynamic spectrum access networks. Wireless Communications and Mobile Computing, 7(9), 1061–1075.

  50. 50.

    Li, X., Hu, F., Zhang, H., & Zhang, X. (2013). A cluster-based MAC protocol for cognitive radio ad hoc networks. Wireless Personal Communications, 69(2), 937–955.

  51. 51.

    Pritom, M. M. A., Sarker, S., Razzaque, M. A., Hassan, M. M., Hossain, M. A., & Alelaiwi, A. (2015). A multi constrained QoS aware MAC protocol for cluster-based cognitive radio sensor networks. International Journal of Distributed Sensor Networks, 2015, 37.

  52. 52.

    Zareei, M., Islam, A. M., & Mansoor, N. (2016). Cross-layer mobility-aware MAC protocol for cognitive radio sensor network. EURASIP Journal on Wireless Communications and Networking, 2016, 160.

  53. 53.

    Alsarhan, A., & Agarwal, A. (2009, August). Cluster-based spectrum management using cognitive radios in wireless mesh network. In Proceedings of 18th international conference on computer communications and networks, 2009. ICCCN 2009 (pp. 1–6). IEEE.

  54. 54.

    Altilar, A. T. D. (2011). United nodes: Cluster-based routing protocol for mobile cognitive radio networks. IET Communications, 5(15), 2097–2105.

  55. 55.

    Huang, X. L., Wang, G., Hu, F., & Kumar, S. (2011). Stability-capacity-adaptive routing for high-mobility multihop cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(6), 2714–2729.

  56. 56.

    Shah, G. A., Alagoz, F., Fadel, E. A., & Akan, O. B. (2014). A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 63(7), 3369–3380.

  57. 57.

    Zubair, S., & Fisal, N. (2014). Reliable geographical forwarding in cognitive radio sensor networks using virtual clusters. Sensors, 14(5), 8996–9026.

  58. 58.

    Saleem, Y., Yau, K. L. A., Mohamad, H., Ramli, N., & Rehmani, M. H. (2015). SMART: A SpectruM-Aware ClusteR-based rouTing scheme for distributed cognitive radio networks. Computer Networks, 91, 196–224.

  59. 59.

    Zhang, H., Zhang, Z., Dai, H., Yin, R., & Chen, X. (2011, December). Distributed spectrum-aware clustering in cognitive radio sensor networks. In 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) (pp. 1–6). IEEE.

  60. 60.

    Ozger, M., & Akan, O. B. (2013, April). Event-driven spectrum-aware clustering in cognitive radio sensor networks. In 2013 Proceedings IEEE INFOCOM (pp. 1483–1491). IEEE.

  61. 61.

    Ozger, M., Fadel, E., & Akan, O. (2016). Event-to-sink spectrum-aware clustering in mobile cognitive radio sensor networks. IEEE Transactions on Mobile Computing, 15(9), 2221–2233.

  62. 62.

    Pei, E., Han, H., Sun, Z., Shen, B., & Zhang, T. (2015). LEAUCH: Low-energy adaptive uneven clustering hierarchy for cognitive radio sensor network. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–8.

  63. 63.

    Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26–38.

  64. 64.

    FCC. (2003, December). Notice of proposed rulemaking and order. ET Docket No. 03-222.

  65. 65.

    Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physical Communication, 4(1), 26–39.

  66. 66.

    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

  67. 67.

    Chen, K.-C., & Prasad, R. (2009). Cognitive radio networks, in cognitive radio networks. Chichester: Wiley.

  68. 68.

    Yu, J. Y., & Chong, P. H. J. (2005). A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys & Tutorials, 7(1), 32–48.

  69. 69.

    Kozat, U. C., Kondylis, G., Ryu, B., & Marina, M. K. (2001, June). Virtual dynamic backbone for mobile ad hoc networks. In IEEE international conference on communications, 2001. ICC 2001 (Vol. 1, pp. 250–255). IEEE.

  70. 70.

    Baddour, K. E., Ureten, O., & Willink, T. J. (2009, August). Efficient clustering of cognitive radio networks using affinity propagation. In Proceedings of 18th international conference on computer communications and networks, 2009. ICCCN 2009 (pp. 1-6). IEEE.

  71. 71.

    Mansoor, N., Islam, A. M., Zareei, M., Baharun, S., & Komaki, S. (2013, December). Spectrum aware cluster-based architecture for cognitive radio ad-hoc networks. In 2013 international conference on advances in electrical engineering (ICAEE) (pp. 181–185). IEEE.

  72. 72.

    Bradonjić, M., & Lazos, L. (2012). Graph-based criteria for spectrum-aware clustering in cognitive radio networks. Ad Hoc Networks, 10(1), 75–94.

  73. 73.

    ul Hasan, N., Ejaz, W., Manzoor, K., & Kim, H. S. (2013). GSM: Gateway selection mechanism for strengthening inter-cluster coordination in cognitive radio ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1.

  74. 74.

    Asterjadhi, A., Baldo, N., & Zorzi, M. (2010, April). A cluster formation protocol for cognitive radio ad hoc networks. In 2010 European wireless conference (EW) (pp. 955–961). IEEE.

  75. 75.

    Zhang, H., Xu, N., Xu, F., & Wang, Z. (2016). Graph cut based clustering for cognitive radio ad hoc networks without common control channels. Wireless Networks, 1–13. doi:10.1007/s11276-016-1329-5.

  76. 76.

    Xu, G., Tan, X., Wei, S., Guo, S., & Wang, B. (2010, September). An energy-driven adaptive cluster-head rotation algorithm for cognitive radio network. In 2010 first international conference on pervasive computing signal processing and applications (PCSPA) (pp. 138–141). IEEE.

  77. 77.

    Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004, November). Implementation issues in spectrum sensing for cognitive radios. In 2004 conference record of the thirty-eighth Asilomar conference on Signals, systems and computers (Vol. 1, pp. 772–776). IEEE.

  78. 78.

    Ma, M., & Tsang, D. H. (2009). Joint design of spectrum sharing and routing with channel heterogeneity in cognitive radio networks. Physical Communication, 2(1), 127–137.

Download references

Author information

Correspondence to Mahassin Mohamed Ahmed Osman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osman, M.M.A., Syed-Yusof, S.K., Abd Malik, N.N.N. et al. A survey of clustering algorithms for cognitive radio ad hoc networks. Wireless Netw 24, 1451–1475 (2018). https://doi.org/10.1007/s11276-016-1417-6

Download citation

Keywords

  • Cognitive radio
  • Ad hoc network
  • Clustering