Wireless Networks

, Volume 24, Issue 2, pp 423–437 | Cite as

Resource allocation algorithm for LTE networks using fuzzy based adaptive priority and effective bandwidth estimation

  • Diego Cruz AbrahãoEmail author
  • Flávio Henrique Teles Vieira


In this paper, we propose a scheme to allocate resource blocks for the Long Term Evolution (LTE) downlink based on the estimation of the effective bandwidths of traffic flows, where users’ priorities are adaptively computed using fuzzy logic. The effective bandwidth of each user traffic flow that is estimated through the parameters of the adaptive β-Multifractal Wavelet Mode modeling, is used to attain their quality of service (QoS) parameters. The proposed allocation scheme aims to guarantee the QoS parameters of users respecting the constraints of modulation and code schemes (modulation and coding scheme) of the LTE downlink transmission. The proposed algorithm considers the average channel quality and the adaptive estimation of effective bandwidth to decide about the scheduling of available radio resources. The efficiency of the proposed scheme is verified through simulations and compared to other algorithms in the literature in terms of parameters such as: system throughput, required data rate not provided, fairness index, data loss rate and network delay.


LTE Scheduling Fuzzy QoS Bandwidth effective Modeling βMWM 


  1. 1.
    3GPP TSG RAN TR 25.913 v8.0.0. (2008). Requirement for evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN).Google Scholar
  2. 2.
    Guan, N., Zhou, Y., Tian, L., Sun, G., & Shi, J. (2011). QoS guaranteed resource block allocation algorithm for LTE systems. In IEEE 7th international conference on wireless and mobile computing, networking and communications.Google Scholar
  3. 3.
    Gonçalves, B. H. P., Vieira, F. H. T., & Costa, V. H. T. (2013). Modelagem Multifractal BetaMWM Adaptativa para Tráfego de Redes de Computadores. In X Encontro Anual de Computação.Google Scholar
  4. 4.
    Su, L., & Ping Wang, F. L. (2012). Particle swarm optimization based resource block allocation algorithm for downlink LTE systems. In The 18th Asia-Pacific conference on communications.Google Scholar
  5. 5.
    Dahlman, E., Parkvall, S., Sköld, J., & Beming, P. (2007). 3G evolution HSPA and LTE for mobile broadband. Oxford: Elsevier.Google Scholar
  6. 6.
    3GPP TS 36.300 version 11.3.0 Release 110. (2012). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2, November 2012.Google Scholar
  7. 7.
    Shreedhar, M., & Varghese, G. (1996). Efficient fair queuing using deficit round-robin. IEEE/ACM Transactions on Networking, 4(3), 375–385.CrossRefGoogle Scholar
  8. 8.
    Jalali, A., Padovani, R., & Pankaj, R. (2000). Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system. In Vehicular technology conference (pp. 1854–1858).Google Scholar
  9. 9.
    Shakkottai, S., & Stolyar, A. L. (2002). Scheduling for multiple flows sharing a time-varying channel: Exponential rule. In Yu. M. Suhov (Ed.), Analytic methods in applied probability (pp. 185–202). Providence, RI: American Mathematical Society.Google Scholar
  10. 10.
    Sadiq, B., Baek, S. J., & De Veciana, G. (2010). Delay-optimal opportunistic scheduling and approximations: The log rule. IEEE/ACM Transactions on Networking, 19(2), 405–418.CrossRefGoogle Scholar
  11. 11.
    Zolfaghari, A., & Taheri, H. (2015). Queue-aware channel-adapted scheduling and congestion control for best-effort services in LTE networks. Canadian Journal of Electrical and Computer Engineering, 38(2), 170–182.CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Huynh, M., & Ghosal, D. (2016). Enhanced DRX-aware scheduling for mobile users in LTE networks. In 2016 international conference on computing, networking and communications (pp. 1–5). 15–18 February 2016.Google Scholar
  13. 13.
    Chung, W.-C., Chang, C.-J., & Wang, L.-C. (2012). An intelligent priority resource allocation scheme for LTE—A downlink systems. IEEE Wireless Communications Letters, 1(3), 241–244.CrossRefGoogle Scholar
  14. 14.
    Khan, N., Martini, M. G., & Staehle, D. (2013). Opportunistic QoS-aware fair downlink scheduling for delay sensitive applications using fuzzy reactive and proactive controllers. In 2013 IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–6). September 2–5, 2013.Google Scholar
  15. 15.
    Wang, J., & Yin, Z. (2008). A ranking selection-based particle swarm optimizer for engineering design optimization problems. Structural and Multidisciplinary Optimization, 37, 131–147.CrossRefGoogle Scholar
  16. 16.
    Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  17. 17.
    Sugeno, M., & Kang, G. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28(1), 15–33.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Systems, Man, and Cybernetics Society, 15(1), 116–132.CrossRefzbMATHGoogle Scholar
  19. 19.
    Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy logic controller, part II. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 419–435.CrossRefzbMATHGoogle Scholar
  20. 20.
    Kawser, M. T., Hamid, N. I. B., Hasan, M. N., Alam, M. S., & Rahman, M. (2012). Downlink SNR to CQI mapping for different multiple antenna techniques in LTE. International Journal of Information and Electronics Engineering, 2, 757.Google Scholar
  21. 21.
    Fisher, A., Calvet, L., & Mandelbrot, B. B. (1997). Multifractality of Deutschmark/US dollar exchanges rates. In Cowles Foundation discussion paper. New Haven: Yale University.Google Scholar
  22. 22.
    Riedi, R. H., Crouse, M. S., Ribeiro, V. J., & Baraniuk, R. G. (1999). A multifractal wavelet model with application to network traffic. IEEE Transactions on Information Theory, 45(3), 992–1018.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chui, C. K. (1992). An introduction to wavelets. San Diego: Academic Press.zbMATHGoogle Scholar
  24. 24.
    Rocha, F. G. C., & Vieira, F. H. T. (2009). Modelagem de tráfego de vídeo MPEG-4 utilizando cascata multifractal com distribuição autorregressiva dos multiplicadores. In I2TS.Google Scholar
  25. 25.
    Kelly, F. (1996). Notes on effective bandwidths. In F. P. Kelly (Ed.), Stochastic networks: Theory and applications (pp. 141–168). New York: Oxford University Press.Google Scholar
  26. 26.
    Vieira, F. H. T., Bianchi, G. R., Ling, L. L., & Lemos, R. P. (2004). Estimação de banda efetiva dinâmica em redes de computadores utilizando uma modelagem auto-regressiva nebulosa. In XXI Simpósio Brasileiro de Telecomunicações (SBrT).Google Scholar
  27. 27.
    Gonçalves, B. H. P., Vieira, F. H. T., & Costa, V. H. T. (2013). Alocação Dinâmica de Slots de Tempo Multiusuário para Redes OFDM/TDMA baseado em Banda Efetiva e Modelagem BMWM. In XXXI Simpósio Brasileiro de Telecomunicações - SBrT2013, Setembro 2013.Google Scholar
  28. 28.
    Gibbens, R. J. (1996). Traffic characterization and effective bandwidths for broadband network traces. In S. Zachary & I. Ziedins (Eds.), Stochastic networks: Theory and application (Vol. 4, pp. 169–179). New York: Oxford University Press.Google Scholar
  29. 29.
    3GPP TR 36.942 version10.2.0. (2011). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio frequency (RF) system scenarios, May 2011.Google Scholar
  30. 30.
    Ni, M., Xu, X., & Mathar, R. (2013). A channel feedback model with robust SINR prediction for LTE systems. In 7th European conference on antennas and propagation (EuCAP).Google Scholar
  31. 31.
    Jain, R., Durresi, A., & Babic, G. (1999). Throughput fairness index: An explanation. Department of CIS, The Ohio State University, ATM_Forum/99-0045.Google Scholar
  32. 32.
    3GPP TS 36.104 version 10.2.0 Release 10. (2011). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Diego Cruz Abrahão
    • 1
    Email author
  • Flávio Henrique Teles Vieira
    • 1
  1. 1.School of Electrical, Mechanical and Computer EngineeringFederal University of GoiásGoiâniaBrazil

Personalised recommendations