Wireless Networks

, Volume 24, Issue 1, pp 223–234 | Cite as

Adaptive A-MPDU retransmission scheme with two-level frame aggregation compensation for IEEE 802.11n/ac/ad WLANs

Article

Abstract

The aggregate MAC protocol data unit (A-MPDU) is one of the significant frame aggregation schemes to improve the performance for high-rate IEEE 802.11n/ac/ad wireless local area networks (WLANs). However, the performance of the A-MPDU scheme does not meet the user expectations because the frame length of the retransmitted A-MPDU will be inevitably and sharply reduced due to the effect of the lost subframe on the number of the aggregatable subframes (i.e., the aggregation level). To overcome this problem, an adaptive A-MPDU retransmission scheme with the two-level frame aggregation compensation is proposed. In this scheme, when the aggregation level of the retransmitted A-MPDU frame dramatically decreases, one of the appropriate two-level aggregation strategies is adaptively employed to compensate the length of the retransmitted A-MPDU frames according to the theoretical analysis of the throughput performance for the conventional A-MPDU scheme and two strategies of the two-level aggregate frame respectively. Simulations using ns-3 platform are performed and the results demonstrate that the proposed adaptive A-MPDU retransmission scheme can achieve higher throughput and medium access control (MAC) layer efficiency.

Keywords

802.11n/ac/ad A-MPDU Two-level frame aggregation Aggregation level Frame length 

Notes

Acknowledgments

This work was supported in part by the 111 Project (B08038) of MOE, China, and in part by the National Natural Science Foundation of China under Grant 61001129.

References

  1. 1.
    IEEE WG. (2009). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 5: Enhancements for higher throughput. In IEEE Std 802.11n, October 2009.Google Scholar
  2. 2.
    IEEE WG. (2013). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 4: Enhancements for very high throughput for operation in bands below 6 GHz. In IEEE Std 802.11ac/D5.0, 2013.Google Scholar
  3. 3.
    IEEE WG. (2012). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 3: Enhancements for very high throughput in the 60 GHz band. In IEEE Std 802.11ad/D9.0, 2012.Google Scholar
  4. 4.
    Skordoulis, D., Ni, Q., Chen, H., Stephens, A. P., Liu, C., & Jamalipour, A. (2008). IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wireless Communication, 15(1), 40C47.CrossRefGoogle Scholar
  5. 5.
    Ginzburg, B. & Kesselman, A. (2007). Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n. In 2007 IEEE Sarnoff symposium (p. 1C5). New York, USA.Google Scholar
  6. 6.
    Qi, P., & Guo, R. (2013). An adaptive frame length two-level frame aggregation method in 802.11n. Electronic Design Engineering, 21(4), 57–70.Google Scholar
  7. 7.
    Noma, Adamu M., et al. (2015). Two-level frames aggregation with enhanced A-MSDU for IEEE 802.11 n WLANs. Wireless Personal Communications, 82(3), 1–14.CrossRefGoogle Scholar
  8. 8.
    Li, T., Ni, Q., Malone, D., et al. (2009). Aggregation with fragment retransmission for very high-speed WLANs. IEEE/ACM Transactions on Networking, 17(2), 591–604.CrossRefGoogle Scholar
  9. 9.
    Gast, M. (2012). 802.11 n: A survival guide. USA: O’Reilly Media.Google Scholar
  10. 10.
    Selvam, T., & Subramanian, S. (2010). A frame aggregation scheduler for IEEE 802.11n. National conference on communications (NCC’2010) (pp. 1–6). Chennai, India.Google Scholar
  11. 11.
    Lin, Y., & Wong, V. W. S. (2006). Frame aggregation and optimal frame size adaptation for IEEE 802.11n WLANs. Global telecommunications conference (pp. 1–6). San Francisco, USA.Google Scholar
  12. 12.
    Feng, K. T., & Lin, P. T. (2009). Frame-aggregated link adaptation algorithm for IEEE 802.11n networks. Personal Indoor and mobile radio communications (pp. 42–46). Tokyo, Japan.Google Scholar
  13. 13.
    Kim, Y., Monroy, E., Lee, O., et al. (2012). Adaptive two-level frame aggregation in IEEE 802.11 n WLAN. In The 18th Asia-Pacific conference on communications (APCC’2012) (pp. 658–663). Jeju Island, Korea.Google Scholar
  14. 14.
    Saif, A., Othman, M., Subramaniam, S., & Hamid, N. A. W. A. (2012). An enhanced A-MSDU frame aggregation scheme for 802.11n wireless networks. Wireless Personal Communications, 66(4), 683C706.CrossRefGoogle Scholar
  15. 15.
    Saif, A., & Othman, M. (2013). SRA-MSDU: Enhanced A-MSDU frame aggregation with selective retransmission in 802.11 n wireless networks. Journal of Network and Computer Applications, 36(4), 1219–1229.CrossRefGoogle Scholar
  16. 16.
    Saif, A., Othman, M., Subramaniam, S. K., & Hamid, N. A. W. A. (2012). An Optimized A-MSDU frame aggregation with subframe retransmission in IEEE 802.11 n wireless networks. In International conference on computational science (ICCS’2012) (pp. 812–821). Omaha, USA.Google Scholar
  17. 17.
    Pefkianakis, I., Hu, Y., Wong, S. H., Yang, H., & Lu, S. (2010). MIMO rate adaptation in 802.11n wireless networks. In Proceedings of the sixteenth annual international conference on Mobile computing and networking (MobiCom’10) (pp. 257–268). Chicago, USA.Google Scholar
  18. 18.
    Liu, J., Yao, M., & Qiu, Z. (2015). Enhanced BlockACK method for A-MPDU transmission in IEEE 802.11 n/ac/ad WLANs. Electronics Letters, 52(2), 159–161.CrossRefGoogle Scholar
  19. 19.
    Vutukuru, M., Balakrishnan, H., & Jamieson, K. (2009). Cross-layer wireless bit rate adaptation. ACM SIGCOMM Computer Communication Review, 39(4), 3C14.CrossRefGoogle Scholar
  20. 20.
    Martorell, G., Riera-Palou, F., & Femenias, G. (2009). Cross-layer link adaptation for IEEE 802.11n. In Proceedings of IEEE 2nd international workshop cross layer design (IWCLD09) (p. 1C5). Palma, Spain.Google Scholar
  21. 21.
    Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. 22.
    Liu, J., Yao, M., & Qiu, Z. (2015). Enhanced two-level frame aggregation with optimized aggregation level for IEEE 802.11 n WLANs. Communications Letters, IEEE, 19(12), 2254–2257.CrossRefGoogle Scholar
  23. 23.
    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Selected Areas in Communications, 18(3), 535–547.CrossRefGoogle Scholar
  24. 24.
    Ni, Q., Li, T., Turletti, T., & Xiao, Y. (2005). Saturation throughput analysis of error-prone 802.11 wireless networks. Journal of Wireless Communications and Mobile Computing, 5(8), 945–956.CrossRefGoogle Scholar
  25. 25.
    Yang, J., Cao, M., & SHAO, X. (2014). Two-level aggregation with adaptive frame length for ultra-high speed WLAN. Journal of Computational Information Systems, 10(17), 7447C7458.Google Scholar
  26. 26.
    NS-3 Network Simulator. http://www.nsnam.org/.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.The State Key Laboratory on Integrated Services Networks (ISN), School of Telecommunications EngineeringXidian UniversityXi’anChina

Personalised recommendations