Wireless Networks

, Volume 24, Issue 1, pp 79–88 | Cite as

Data offloading and task allocation for cloudlet-assisted ad hoc mobile clouds

  • Xijuan Guo
  • Liqing Liu
  • Zheng Chang
  • Tapani Ristaniemi


Nowadays, although the data processing capabilities of the modern mobile devices are developed in a fast speed, the resources are still limited in terms of processing capacity and battery lifetime. Some applications, in particular the computationally intensive ones, such as multimedia and gaming, often require more computational resources than a mobile device can afford. One way to address such a problem is that the mobile device can offload those tasks to the centralized cloud with data centers, the nearby cloudlet or ad hoc mobile cloud. In this paper, we propose a data offloading and task allocation scheme for a cloudlet-assisted ad hoc mobile cloud in which the master device (MD) who has computational tasks can access resources from nearby slave devices (SDs) or the cloudlet, instead of the centralized cloud, to share the workload, in order to reduce the energy consumption and computational cost. A two-stage Stackelberg game is then formulated where the SDs determine the amount of data execution units that they are willing to provide, while the MD who has the data and tasks to offload sets the price strategies for different SDs accordingly. By using the backward induction method, the Stackelberg equilibrium is derived. Extensive simulations are conducted to demonstrate the effectiveness of the proposed scheme.


Cloud computing Mobile cloud computing Cloudlet Ad hoc mobile cloud Offloading Stackelberg game 


  1. 1.
    Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.CrossRefGoogle Scholar
  2. 2.
    Rahimi, M. R., Ren, J., Liu, C., Vasilakos, A. V., & Venkatasubramanian, N. (2014). Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), 133–143.CrossRefGoogle Scholar
  3. 3.
    Wu, L., Garg, S. K., & Buyya, R. (2012). SlA-based admission control for a software-as-a-service provider in cloud computing environments. Journal of Computer and System Science, 78(5), 1280–1299.CrossRefGoogle Scholar
  4. 4.
    Liu, F., Shu, P., Jin, H., Ding, L., Yu, J., Niu, D., et al. (2013). Gearing resource poor mobile devices with powerful clouds: Architectures, challenges, and applications. IEEE Wireless Communications, 20(3), 14–22.CrossRefGoogle Scholar
  5. 5.
    Fang, W., Li, Y., Zhang, H., Xiong, N., Lai, J., & Vasilakos, A. V. (2014). On the throughput-energy tradeoff for data transmission between cloud and mobile devices. Information Sciences, 283(1), 79–93.CrossRefGoogle Scholar
  6. 6.
    Vazifehdan, J., Prasad, R. V., Jacobsson, M., & Niemegeers, I. (2012). An analytical energy consumption model for packet transfer over wireless links. IEEE Communications Letters, 16(1), 30–33.CrossRefGoogle Scholar
  7. 7.
    Kumar, K., & Lu, Y. H. (2010). Cloud computing for mobile users: Can offloading computation save energy. IEEE Computer, 43(4), 51–56.CrossRefGoogle Scholar
  8. 8.
    Jararweh, Y., Tawalbeh, L., Ababneh, F., & Khreishah, A. (2014). Scalable cloudlet-based mobile computing model. Procedia Computer Science, 34, 434–441.CrossRefGoogle Scholar
  9. 9.
    Hasan, A., & Andrews, J. G. (2007). The guard zone in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 6(3), 897–906.CrossRefGoogle Scholar
  10. 10.
    Gu, L., Zeng, D., Barnawi, A., Guo, S., & Stojmenovic, I. (2015). Optimal task placement with QoS constraints in geo-distributed data centers using DVFS. IEEE Transactions on Computers, 64(7), 2049–2059.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jin, H., Wang, X., Wu, S., Di, S., & Shi, X. (2014). Towards optimized fine-grained pricing of IaaS cloud platform. IEEE Transcation on Cloud Computing, 3(4), 436–448.CrossRefGoogle Scholar
  12. 12.
    Kemp, R., Palmer, N., Kielmann, T., & Bal, H. (2012). Cuckoo: A computation offloading framework for smartphones (Vol. 76, pp. 59–79). Berlin Heidelberg: Springer.Google Scholar
  13. 13.
    Niu, J., Song, W., & Atiquzzaman, M. (2014). Bandwidth-adaptive partitioning for distributed execution optimization of mobile applications. Journal of Network and Computer Applications, 37(1), 334–347.CrossRefGoogle Scholar
  14. 14.
    Chen, X. (2015). Decentralized computation offloading game for mobile cloud computing. IEEE Transaction on Parallel and Distributed Systems, 26(4), 974–984.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang, W. W., Wen, Y. G., Guan, K., Kilper, D., Luo, H. Y., & Wu, D. P. (2013). Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions on Wireless Communications, 12(9), 4569–4581.CrossRefGoogle Scholar
  16. 16.
    Jiang, Z. F., & Mao, S. W. (2015). Energy delay tradeoff in cloud offloading for multi-core mobile devices. IEEE Access, 3, 2306–2316.CrossRefGoogle Scholar
  17. 17.
    Cai, W., Leung, V. C. M., & Hu, L. (2014). A cloudlet-assisted multiplayer cloud gaming system. Journal of Mobile Networks and Applications, 19(2), 144–152.CrossRefGoogle Scholar
  18. 18.
    Sanaei, Z., Abolfazli, S., Gani, A., & Buyya, R. (2014). Heterogeneity in mobile cloud computing: Taxonomy and open challenges. IEEE Communications Surveys Tutorials, 16(1), 369–392.CrossRefGoogle Scholar
  19. 19.
    Liu, Y. C., & Lee, M. J. (2015). Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system. IEEE Transactions on Mobile Computing. doi: 10.1109/TMC.2015.2504091.Google Scholar
  20. 20.
    Su, J. T., Lin, F. H., Zhou, X. W., & Lu, X. (2015). Steiner tree based optimal resource caching scheme in fog computing. China Communications, 12(8), 161–168.CrossRefGoogle Scholar
  21. 21.
    Cai, W., Hong, Z., Wang, X. F., Chan, H. C. B., & Leung, V. C. M. (2015). Quality-of-experience optimization for a cloud gaming system with ad hoc cloudlet assistance. IEEE Transactions on Circuits and Systems for Video Technology, 25(12), 2092–2104.CrossRefGoogle Scholar
  22. 22.
    Kumar, K., Liu, J., Lu, Y. H., & Bhargava, B. (2013). A survey of computation offloading for mobile systems. Mobile Networks and Applications, 18(1), 129–140.CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Niyato, D., & Wang, P. (2015). Offloading in mobile cloudlet systems with intermittent connectivity. IEEE Transactions on Mobile Computing, 14(12), 2516–2530.CrossRefGoogle Scholar
  24. 24.
    Chen, M., Hao, Y. X., Li, Y., Lai, C. F., & Wu, D. (2015). On the computation offloading at ad hoc cloudlet: Architecture and service modes. IEEE Communications Magazine, 53(6), 18–25.CrossRefGoogle Scholar
  25. 25.
    Chi, F. Y., Wang, X. F., Cai, W., & Leung, V. C. M. (2015). Ad-hoc cloudlet based cooperative cloud gaming. IEEE Transactions on Cloud Computing. doi: 10.1109/TCC.2015.2498936.Google Scholar
  26. 26.
    Tang, L., & Chen, H. (2014). Joint pricing and capacity planning in the IaaS cloud market. IEEE Transactions on Cloud Computing. doi: 10.1109/TCC.2014.2372811 (in press).
  27. 27.
    Zhou, Z., Liu, F., Jin, H., Li, B., & Jiang, H. (2014). On arbitrating the power-performance tradeoff in SaaS clouds. IEEE Transactions on Parallel and Distributed Systems, 25(10), 2648–2658.CrossRefGoogle Scholar
  28. 28.
    Tram, T. H., Tham, C. K., & Niyato, D. (2014). A stochastic workload distribution approach for an ad-hoc mobile cloud. In 2014 IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom), Singapore.Google Scholar
  29. 29.
    Moya, S., & Poznyak, A. S. (2009). Extraproximal method application for a Stackelberg nash equilibrium calculation in static hierarchical games. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(6), 1493–1504.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Information Science and EngineeringYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations