Wireless Networks

, Volume 23, Issue 7, pp 2111–2133 | Cite as

SR3: secure resilient reputation-based routing

  • Karine Altisen
  • Stéphane DevismesEmail author
  • Raphaël Jamet
  • Pascal Lafourcade


In this paper, we propose SR3 (which means secure resilient reputation-based routing), a secure and resilient algorithm for convergecast routing in wireless sensor networks. SR3 uses lightweight cryptographic primitives to achieve data confidentiality and unforgeability. Security of SR3 has been proven formally using two verification tools: CryptoVerif and Scyther. We made simulations to show the resiliency of SR3 against various scenarios, where we mixed selective forwarding, blackhole, wormhole, and Sybil attacks. We compared our solution to several routing algorithms of the literature. Our results show that the resiliency accomplished by SR3 is drastically better than the one achieved by those protocols, especially when the network is sparse. Moreover, unlike previous solutions, SR3 self-adapts after compromised nodes suddenly change their behavior.


Wireless sensor networks Routing Security Resiliency 



The authors are grateful to Bruno Blanchet for his meticulous reading of the paper and his numerous suggestions.


  1. 1.
    Accettura, N., Grieco, L., Boggia, G., & Camarda, P. (2011). Performance analysis of the RPL routing protocol. In 2011 IEEE international conference on mechatronics (ICM) (pp. 767–772).Google Scholar
  2. 2.
    Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., & Rackoff, C. (1979). Random walks, universal traversal sequences, and the complexity of maze problems. In 20th annual symposium on foundations of computer science (pp. 218–223).Google Scholar
  3. 3.
    Altisen, K., Devismes, S., Jamet, R., & Lafourcade, P. (2013). SR3: Secure resilient reputation-based routing. In 2013 IEEE international conference on distributed computing in sensor systems (DCOSS) (pp. 258–265). doi: 10.1109/DCOSS.2013.33.
  4. 4.
    Altisen, K., Devismes, S., Jamet, R., & Lafourcade, P. (2013). SR3 supplementary material.
  5. 5.
    Bellare, M.: Symmetric encryption.
  6. 6.
    Bellare, M. (2006). New proofs for nmac and hmac: Security without collision-resistance. An extended abstract of this paper appeared in C. Dwork (ed.) Advances in cryptology—Crypto 2006, proceedings, Lecture Notes in Computer Science (Vol. 4117). Berlin: Springer.
  7. 7.
    Bellare, M., Canetti, R., & Krawczyk, H. (1996). Keying hash functions for message authentication. In Proceedings of the 16th annual international cryptology conference on advances in cryptology, CRYPTO ’96 (pp. 1–15). London: Springer.
  8. 8.
    Bellare, M., Kilian, J., & Rogaway, P. (2000). The security of the cipher block chaining message authentication code. Journal of Computer and System Sciences, 61(3), 362–399. doi: 10.1006/jcss.1999.1694.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bellare, M., & Namprempre, C. (2008). Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. Journal of Cryptology, 21(4), 469–491. doi: 10.1007/s00145-008-9026-x.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bellare, M., & Rogaway, P. (1993). Random oracles are practical: A paradigm for designing efficient protocols. In Proceedings of the 1st ACM conference on Computer and communications security (pp. 62–73).Google Scholar
  11. 11.
    Bellare, M., & Rogaway, P. (2000). Encode-then-encipher encryption: How to exploit nonces or redundancy in plaintexts for efficient cryptography. In T. Okamoto (Ed.), Advances in cryptology—ASIACRYPT 2000, 6th international conference on the theory and application of cryptology and information security, Kyoto, Japan, December 3–7, 2000, proceedings. Lecture Notes in Computer Science (Vol. 1976, pp. 317–330). Berlin: Springer. doi: 10.1007/3-540-44448-3_24.Google Scholar
  12. 12.
    Blanchet, B. (2008). A computationally sound mechanized prover for security protocols. IEEE Transactions on Dependable and Secure Computing, 5(4), 193–207.CrossRefGoogle Scholar
  13. 13.
    Bogdanov, A., Khovratovich, D., & Rechberger, C. (2011). Biclique cryptanalysis of the full aes. In Advances in cryptology–ASIACRYPT 2011 (pp. 344–371). Berlin: Springer.Google Scholar
  14. 14.
    Bose, P., Morin, P., Stojmenović, I., & Urrutia, J. (2001). Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7(6), 609–616.CrossRefzbMATHGoogle Scholar
  15. 15.
    Cremers, C. J. (2008). The scyther tool: Verification, falsification, and analysis of security protocols. In Computer aided verification (pp. 414–418). Berlin: Springer.Google Scholar
  16. 16.
    Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–208.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ehrsam, W., Meyer, C., Smith, J., & Tuchman, W. (1978). Message verification and transmission error detection by block chaining. US Patent 4,074,066
  18. 18.
    Eisenbarth, T., & Kumar, S. (2007). A survey of lightweight–cryptography implementations. IEEE Design & Test of Computers, 24(6), 522–533.CrossRefGoogle Scholar
  19. 19.
    Erdene-Ochir, O., Kountouris, A., Minier, M., & Valois, F. (2011). Enhancing resiliency against routing layer attacks in wireless sensor networks: Gradient-based routing in focus. International Journal on Advances in Networks and Services, 4(1 and 2), 38–54.Google Scholar
  20. 20.
    Erdene-Ochir, O., Kountouris, A. A., Minier, M., & Valois, F. (2012). A new metric to quantify resiliency in networking. IEEE Communications Letters, 16(10), 1699–1702. doi: 10.1109/LCOMM.2012.081612.121191.CrossRefGoogle Scholar
  21. 21.
    Erdene-Ochir, O., Minier, M., Valois, F., & Kountouris, A. (2010). Resiliency of wireless sensor networks: Definitions and analyses. In 2010 IEEE 17th international conference on telecommunications (ICT) (pp. 828–835).Google Scholar
  22. 22.
    Erdene-Ochir, O., Minier, M., Valois, F., & Kountouris, A. (2010). Toward resilient routing in wireless sensor networks: Gradient-based routing in focus. In Proceedings of the 2010 fourth international conference on sensor technologies and applications, SENSORCOMM ’10 (pp. 478–483).Google Scholar
  23. 23.
    Heurtefeux, K., Erdene-Ochir, O., Mohsin, N., & Menouar, H. (2015). Enhancing RPL resilience against routing layer insider attacks. In L. Barolli, M. Takizawa, F. Xhafa, T. Enokido, & J. H. Park (Eds.), 29th IEEE international conference on advanced information networking and applications, AINA 2015, Gwangju, South Korea, March 24–27, 2015 (pp. 802–807). Washington: IEEE Computer Society.Google Scholar
  24. 24.
    Hu, Y., Perrig, A., & Johnson, D. (2005). Ariadne: A secure on-demand routing protocol for ad hoc networks. Wireless Networks, 11(1–2), 21–38.CrossRefGoogle Scholar
  25. 25.
    Katz, J., & Yung, M. (2001). Unforgeable encryption and chosen ciphertext secure modes of operation. In G. Goos, J. Hartmanis, J. van Leeuwen, & B. Schneier (Eds.), Fast software encryption, Lecture Notes in Computer Science (Vol. 1978, pp. 284–299). Berlin: Springer. doi: 10.1007/3-540-44706-7_20.CrossRefGoogle Scholar
  26. 26.
    Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48(177), 203–209.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, D., & Ning, P. (2004). Multilevel tesla: Broadcast authentication for distributed sensor networks. ACM Transactions in Embedded Computing Systems (TECS), 3, 800–836.CrossRefGoogle Scholar
  28. 28.
    Lowe, G. (1997). A hierarchy of authentication specifications. In Computer security foundations workshop, 1997. Proceedings., 10th (pp. 31–43). IEEE.Google Scholar
  29. 29.
    Miller, V. S. (1986). Use of elliptic curves in cryptography. In Advances in cryptology CRYPTO 85 proceedings (Vol. 218, pp. 417–426).Google Scholar
  30. 30.
    Papadimitratos, P., & Haas, Z. (2002). Secure routing for mobile ad hoc networks. In Proceedings of the SCS commnication networks and distributed systems modeling and simulation conference (CNDS) (pp. 193–204).Google Scholar
  31. 31.
    Perrig, A., Szewczyk, R., Tygar, J., Wen, V., & Culler, D. (2002). Spins: Security protocols for sensor networks. Wireless Networks, 8(5), 521–534.CrossRefzbMATHGoogle Scholar
  32. 32.
    Rackoff, C., & Simon, D. R. (1991). Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In J. Feigenbaum (Ed.), Advances in cryptology–CRYPTO ’91, 11th annual international cryptology conference, Santa Barbara, California, USA, August 11–15, 1991, proceedings. Lecture Notes in Computer Science (Vol. 576, pp. 433–444). Berlin: Springer. doi: 10.1007/3-540-46766-1_35.Google Scholar
  33. 33.
    Schurgers, C., & Srivastava, M. (2001). Energy efficient routing in wireless sensor networks. In Proceedings of MILCOM 2001 (pp. 357–361).Google Scholar
  34. 34.
    Sinalgo: Simulator for network algorithms. Distributed Computing Group at ETH Zurich.
  35. 35.
    Ye, W., Heidemann, J. S., & Estrin, D. (2004). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3), 493–506. doi: 10.1109/TNET.2004.828953.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karine Altisen
    • 1
  • Stéphane Devismes
    • 1
    Email author
  • Raphaël Jamet
    • 1
  • Pascal Lafourcade
    • 2
  1. 1.VERIMAGUniversité de GrenobleSaint-Martin-d’HèresFrance
  2. 2.LIMOSUniversité Clermont AuvergneAubièreFrance

Personalised recommendations